❶ osl/rm將整個計算機網路劃分為哪七層
從下到上分別是:物理層、數據鏈路層、網路層、傳輸層、會話層、表示層、應用層
❷ 計算機網路問題:比較二層和三層架構客戶/伺服器模式,分析各自特點,以及適用場合。
1、簡單說client直接訪問DBserver為兩層結構。
client通過中間件等應用伺服器訪問DBserver為三層結構。
三層結構比兩層結構安全。
2、可以這樣理解:客戶端程序訪問伺服器的結構叫兩層結構。中間加一個事務邏輯處理封裝的中間件作為溝通就是三層結構,這樣可以均衡數據負載!
3、拷貝一些基礎知識你看一下。(沒有圖片)
附:相關知識
現代社會的軟體開發體系結構簡單概括就是N層體系結構,這里的N大於等於1。換而言之就是:單機體系(N=1)、Client/Server結構體系(N=2)、多層體系結構(N>2)。下面我們就對這幾種體系結構進行簡單的介紹和比較。
單機體系:這種軟體適用於單機狀態,一般情況下是針對某一種單一的應用,如字典軟體、翻譯軟體等等。這種開發方式不適用於綜合管理系統的開發。
C/S結構:c/s結構是在區域網上發展起來的,它具有數據集中管理的能力,在出現之初確實解決了很多計算機發展的難題,同時隨著4GL語言的發展,用戶的界面也比較豐富,在CLIENT端的事物處理能力也使整個系統的性能得到全面的提高,並使管理信息系統(MIS:Management Information System)得到快速的發展。其大概的圖例見圖1。
我們根據兩層結構體系的概念來分解C/S結構的話,可以將他分為表現層(也叫表達層)和數據層。數據層提供數據存放的載體,而表現層則通過一定技術將數據層中數據取出,進行一定的分析並以某一種格式向用戶進行顯示。在兩層體系結構中,表現層對資料庫進行直接操作,且大部分的商業處理邏輯(Business Logic,數據之間的關系規則)也在表現層中實現.
圖1:Client/Server 體系結構示例
三層體系結構:三層體系結構是N層體系結構的典型,所謂的三層體系結構就是將原來在兩層體系結構中的商業邏輯部分從數據層和表現層中提煉出來,形成中間件伺服器,所以三層就是:表現層、商業邏輯層(Business Logic)、數據層。在此之外,還有一種系統結構就是分布式系統,其結構系統圖見圖2。
圖2:分布式系統的結構示意圖
在分布式系統中,其介於客戶端和數據端之間的僅僅是一個應用伺服器,它管理客戶端的軟體,但不做性能調整,比如每一個客戶端調用時均產生一個新的資料庫連接,而不能夠將連接保持形成一個連接緩沖池。雖然在分布式應用中已經結合了一些商業處理邏輯,但是並沒有真正改變原來的C/S體系結構。
在三層體系結構中,表現層將主要提供與客戶的交互功能,數據層提供系統中的所有的數據保存載體,而商業邏輯層將整個系統中的商業處理邏輯整和在一起,形成中間件,在三層中。中間件起了承前啟後的作用,表現層將客戶端的請求通過IDL調用中間件,中間件在將其轉化成數據處理原則,並從資料庫中獲得相應的數據,返回給客戶端的軟體,轉換成客戶要求的方式顯示。關於三層體系結構的示意圖見圖3。
圖3:三層體系結構示意圖
我們已經簡單的介紹了C/S結構和三層體系結構,有關的優點已經昭然若揭,為了更好的讓您了解兩者的區別,我們將兩者進行一些比較。
C/S結構的缺點:
缺乏有效的集權控制:在眾多的C/S軟體中我們不難看出,所有的構件不能夠在一個地點(如一台機器)進行統一的管理,而不得不將他們分化在各個CLIENT的應用中,使得維護和安全保密均很困難。
缺乏安全性:在分散的計算機系統中,控制信息的訪問安全是非常困難的,由於客戶端經常需要對一些敏感的數據進行分析導致安全漏洞很容易發生。
客戶端工作量重:當將一個應用中的所有的商業邏輯全部在各個客戶端來實現的時候,僅僅是使用桌面電腦的客戶端資源將發生不堪負載的情況。
軟體的重用性差:由於C/S結構下的應用軟體一般均是根據操作系統進行定製,且開發工具也是有一定的限定,一旦需要改變某一個要素的話,很可能只能重做,例如原來用C語言來開發,現在需要轉向PB進行開發,那麼,原來的所有工作都需要重新來過。
隨著應用的不斷復雜,桌面電腦將需要不斷的升級以適應系統的性能需求,甚至有時侯會完全超出桌面系統能夠承受的限度。例如:諸如多線程和對稱多重處理技術等先進操作系統的特性可能不能在標准桌面電腦系統中提供,不通過訪問具有這些技術的伺服器,客戶端的桌面系統將可能永遠不能獲得這些新的技術的性能。
針對這些問題,三層體系結構給予了很好的解決方案。
在三層體系結構中,提供在客戶端和伺服器端進行應用功能的分割,系統通過應用將用戶定義的界面系統從商業處理邏輯中分割出去。通過將商業處理邏輯集中在中間件伺服器中,將能夠減小客戶端的工作量並使敏感數據訪問控制變得簡單。
在三層結構中,客戶端將與伺服器端的數據變化隔離,簡單的說,商業處理邏輯不受客戶端的用戶界面的改變而影響。三層體系中有一個非常重要的特性就是系統具有良好的組件重用性,例如在PB中開發的組件,可以在VC中進行使用。
❸ 計算機網路體系分為哪四層
1.、應用層
應用層對應於OSI參考模型的高層,為用戶提供所需要的各種服務,例如:FTP、Telnet、DNS、SMTP等.
2.、傳輸層
傳輸層對應於OSI參考模型的傳輸層,為應用層實體提供端到端的通信功能,保證了數據包的順序傳送及數據的完整性。該層定義了兩個主要的協議:傳輸控制協議(TCP)和用戶數據報協議(UDP).
TCP協議提供的是一種可靠的、通過「三次握手」來連接的數據傳輸服務;而UDP協議提供的則是不保證可靠的(並不是不可靠)、無連接的數據傳輸服務.
3.、網際互聯層
網際互聯層對應於OSI參考模型的網路層,主要解決主機到主機的通信問題。它所包含的協議設計數據包在整個網路上的邏輯傳輸。注重重新賦予主機一個IP地址來完成對主機的定址,它還負責數據包在多種網路中的路由。
該層有三個主要協議:網際協議(IP)、互聯網組管理協議(IGMP)和互聯網控制報文協議(ICMP)。
IP協議是網際互聯層最重要的協議,它提供的是一個可靠、無連接的數據報傳遞服務。
4.、網路接入層(即主機-網路層)
網路接入層與OSI參考模型中的物理層和數據鏈路層相對應。它負責監視數據在主機和網路之間的交換。事實上,TCP/IP本身並未定義該層的協議,而由參與互連的各網路使用自己的物理層和數據鏈路層協議,然後與TCP/IP的網路接入層進行連接。地址解析協議(ARP)工作在此層,即OSI參考模型的數據鏈路層。
(3)計算機網路表現層擴展閱讀:
OSI將計算機網路體系結構(architecture)劃分為以下七層:
物理層: 將數據轉換為可通過物理介質傳送的電子信號相當於郵局中的搬運工人。
數據鏈路層: 決定訪問網路介質的方式。
在此層將數據分幀,並處理流控制。本層指定拓撲結構並提供硬體定址,相當於郵局中的裝拆箱工人。
網路層: 使用權數據路由經過大型網路 相當於郵局中的排序工人。
傳輸層: 提供終端到終端的可靠連接 相當於公司中跑郵局的送信職員。
會話層: 允許用戶使用簡單易記的名稱建立連接 相當於公司中收寄信、寫信封與拆信封的秘書。
表示層: 協商數據交換格式 相當公司中簡報老闆、替老闆寫信的助理。
應用層: 用戶的應用程序和網路之間的介面老闆。
❹ 簡述計算機網路的組成,以及各個組成部分的作用
計算機網路由七層組成:
1、物理層:傳遞信息需要利用一些物理傳輸媒體,如雙絞線、同軸電纜、光纖等。物理層的任務就是為上層提供一個物理的連接,以及該物理連接表現出來的機械、電氣、功能和過程特性,實現透明的比特流傳輸。
2、數據鏈路層:數據鏈路層負責在2個相鄰的結點之間的鏈路上實現無差錯的數據幀傳輸。在接收方接收到數據出錯時要通知發送方重發,直到這一幀無差錯地到達接收結點,數據鏈路層就是把一條有可能出錯的實際鏈路變成讓網路層看起來像不會出錯的數據鏈路。
3、網路層:網路中通信的2個計算機之間可能要經過許多結點和鏈路,還可能經過幾個通信子網。網路層數據傳輸的單位是分組。網路層的主要任務是為要傳輸的分組選擇一條合適的路徑,使發送分組能夠正確無誤地按照給定的目的地址找到目的主機,交付給目的主機的傳輸層。
4、傳輸層:傳輸層的主要任務是通過通信子網的特性,最佳地利用網路資源,並以可靠與經濟的方式為2個端系統的會話層之間建立一條連接通道,以透明地傳輸報文。傳輸層向上一層提供一個可靠的端到端的服務,使會話層不知道傳輸層以下的數據通信的細節。
5、會話層:在會話層以及以上各層中,數據的傳輸都以報文為單位,會話層不參與具體的傳輸,它提供包括訪問驗證和會話管理在內的建立以及維護應用之間的通信機制。如伺服器驗證用戶登錄便是由會話層完成的。
6、表示層:這一層主要解決用戶信息的語法表示問題。它將要交換的數據從適合某一用戶的抽象語法,轉換為適合OSI內部表示使用的傳送語法。即提供格式化的表示和轉換數據服務。數據的壓縮和解壓縮、加密和解密等工作都由表示層負責。
7、應用層:這是OSI參考模型的最高層。應用層確定進程之間通信的性質以滿足用戶的需求,以及提供網路與用戶軟體之間的介面服務。
(4)計算機網路表現層擴展閱讀:
傳輸層作為整個計算機網路的核心,是惟一負責總體數據傳輸和控制的一層。因為網路層不一定保證服務的可靠,而用戶也不能直接對通信子網加以控制,因此在網路層之上,加一層即傳輸層以改善傳輸質量。
傳輸層利用網路層提供的服務,並通過傳輸層地址提供給高層用戶傳輸數據的通信埠,使系統間高層資源的共享不必考慮數據通信方面和不可靠的數據傳輸方面的問題。
❺ 什麼是分層網路體系結構分層的含義是什麼
指的是將系統的組件分隔到不同的層中,每一層中的組件應保持內聚性,並且應大致在同一抽象級別;每一層都應與它下面的各層保持鬆散耦合。
分層架構的優點
1、開發人員的專業分工,專注理解某一層。由於某一層僅僅調用其相鄰下一層所提供的程序介面,只需要本層的介面和相鄰下一層的介面定義清晰完整,開發人員在開發某一層時就可以像關注集中於這一層所用的功能和技術。
2、可以很容易用新的實現來替換原有層次的實現。 只要前後提供的服務(介面)相同,即可替換。系統開發過程中,功能需求不斷變化,我們可以替換現有的層次以滿足新的需求變化。
3、降低了系統間的依賴。 比如業務邏輯層中的業務發生變化, 其他兩層即表現層以及數據訪問層程序也不需要變化。這大大降低了系統各層之間的依賴。
4、有利於復用。充分利用現有的功能程序組件,將已經辨識的具有相對獨立功能的層應用於新系統的開發,保證新系統開發的過程中,能夠將重點集中於辨識和實現應用系統特有的業務功能,最終縮短系統開發周期,提高系統的質量。
分層思想
分層是基於面向對象上的,是更高層次上的設計理念。在軟體開發技術的發展過程中,出現了很多優秀的思想與模式。這些思想和模式凝結了無數程序設計人員的實踐經驗和智慧,是軟體開發領域的精華。這其中有很多思想對分層架構設計有著重要的指導作用。
分層架構的弊端
1、級聯修改問題。一些復雜的業務中,由於業務流程發生變化,為了這個變化所有層都需要修改。
2、性能問題。本來是直接簡單的操作,需要在整個系統中層層傳遞,勢必造成性能的下降,同時也加大的開發的復雜度。
從上面的分析可以看出, 分層架構設計有許多優點同樣存在不足,在實際使用過程中,我們應該權衡利弊關系,選擇一種符合實際項目的最佳方案。
❻ 究竟網路有幾個層次
為了使不同計算機廠家生產的計算機能夠相互通信,以便在更大的范圍內建立計算機網路,國際標准化組織(ISO)在1978年提出了「開放系統互聯參考模型」,即著名的OSI/RM模型(Open System Interconnection/Reference Model)。它將計算機網路體系結構的通信協議劃分為七層,自下而上依次為:物理層(Physics Layer)、數據鏈路層(Data Link Layer)、網路層(Network Layer)、傳輸層(Transport Layer)、會話層(Session Layer)、表示層(Presentation Layer)、應用層(Application Layer)。其中第四層完成數據傳送服務,上面三層面向用戶。
除了標準的OSI七層模型以外,常見的網路層次劃分還有TCP/IP四層協議以及TCP/IP五層協議
1)物理層(Physical Layer)
激活、維持、關閉通信端點之間的機械特性、電氣特性、功能特性以及過程特性。該層為上層協議提供了一個傳輸數據的可靠的物理媒體。簡單的說,物理層確保原始的數據可在各種物理媒體上傳輸。物理層記住兩個重要的設備名稱,中繼器(Repeater,也叫放大器)和集線器。
2)數據鏈路層(Data Link Layer)
數據鏈路層在物理層提供的服務的基礎上向網路層提供服務,其最基本的服務是將源自網路層來的數據可靠地傳輸到相鄰節點的目標機網路層。為達到這一目的,數據鏈路必須具備一系列相應的功能,主要有:如何將數據組合成數據塊,在數據鏈路層中稱這種數據塊為幀(frame),幀是數據鏈路層的傳送單位;如何控制幀在物理信道上的傳輸,包括如何處理傳輸差錯,如何調節發送速率以使與接收方相匹配;以及在兩個網路實體之間提供數據鏈路通路的建立、維持和釋放的管理。數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。
有關數據鏈路層的重要知識點:
1>數據鏈路層為網路層提供可靠的數據傳輸;
2>基本數據單位為幀;
3> 主要的協議:乙太網協議;
4> 兩個重要設備名稱:網橋和交換機。
3)網路層(Network Layer)
網路層的目的是實現兩個端系統之間的數據透明傳送,具體功能包括定址和路由選擇、連接的建立、保持和終止等。它提供的服務使傳輸層不需要了解網路中的數據傳輸和交換技術。如果您想用盡量少的詞來記住網路層,那就是「路徑選擇、路由及邏輯定址」。
網路層中涉及眾多的協議,其中包括最重要的協議,也是TCP/IP的核心協議——IP協議。IP協議非常簡單,僅僅提供不可靠、無連接的傳送服務。IP協議的主要功能有:無連接數據報傳輸、數據報路由選擇和差錯控制。與IP協議配套使用實現其功能的還有地址解析協議ARP、逆地址解析協議RARP、網際網路報文協議ICMP、網際網路組管理協議IGMP。具體的協議我們會在接下來的部分進行總結,有關網路層的重點為:
1> 網路層負責對子網間的數據包進行路由選擇。此外,網路層還可以實現擁塞控制、網際互連等功能;
2> 基本數據單位為IP數據報;
3> 包含的主要協議:
IP協議(Internet Protocol,網際網路互聯協議);
ICMP協議(Internet Control Message Protocol,網際網路控制報文協議);
ARP協議(Address Resolution Protocol,地址解析協議);
RARP協議(Reverse Address Resolution Protocol,逆地址解析協議)。
4> 重要的設備:路由器。
4)傳輸層(Transport Layer)
第一個端到端,即主機到主機的層次。傳輸層負責將上層數據分段並提供端到端的、可靠的或不可靠的傳輸。此外,傳輸層還要處理端到端的差錯控制和流量控制問題。
傳輸層的任務是根據通信子網的特性,最佳的利用網路資源,為兩個端系統的會話層之間,提供建立、維護和取消傳輸連接的功能,負責端到端的可靠數據傳輸。在這一層,信息傳送的協議數據單元稱為段或報文。
網路層只是根據網路地址將源結點發出的數據包傳送到目的結點,而傳輸層則負責將數據可靠地傳送到相應的埠。
有關網路層的重點:
1>傳輸層負責將上層數據分段並提供端到端的、可靠的或不可靠的傳輸以及端到端的差錯控制和流量控制問題;
2> 包含的主要協議:TCP協議(Transmission Control Protocol,傳輸控制協議)、UDP協議(User Datagram Protocol,用戶數據報協議);
3> 重要設備:網關。
5)會話層
會話層管理主機之間的會話進程,即負責建立、管理、終止進程之間的會話。會話層還利用在數據中插入校驗點來實現數據的同步。
6)表示層
表示層對上層數據或信息進行變換以保證一個主機應用層信息可以被另一個主機的應用程序理解。表示層的數據轉換包括數據的加密、壓縮、格式轉換等。
7)應用層
為操作系統或網路應用程序提供訪問網路服務的介面。
會話層、表示層和應用層重點:
1> 數據傳輸基本單位為報文;
2> 包含的主要協議:FTP(文件傳送協議)、Telnet(遠程登錄協議)、DNS(域名解析協議)、SMTP(郵件傳送協議),POP3協議(郵局協議),HTTP協議(Hyper Text Transfer Protocol)。
摘抄
❼ 計算機網路的分層結構
物理層:為數據鏈路層對等實體之間的信息交換建立物理連接,在物理連接上正確、透明地傳送物理層數據單元(物理層的數據單元是比特流)。物理層提供激活、維持、去活物理連接的所需機械特性、電氣特性、功能特性、規程特性的手段。
鏈路層:該層相鄰結點的一個或多個物理連接上為網路層建立、維持、釋放鏈路連接,並在鏈路連接上可靠地、正確地傳送鏈路層協議數據單元(通常稱為幀)。糾錯和流量控制是鏈路層的兩個主要功能。
網路層:提供網路層對等實體建立、維持、終止網路連接的手段,並在網路連接上交換網路層協議數據單元,即分組。其中,一個重要功能是網路選路和定址。
傳輸層:基本功能是為會話層提供可靠地、經濟的傳輸連接的手段,並在傳輸連接上交換傳輸層協議數據單元—報文。傳輸層是端到端,在通信子網中無傳輸層。流量控制(Flow control)是傳輸層的一個重要功能。
會話層:為會話連接提供手段,並利用會話連接組織和同步應用進程之間的會話。
表示層:該層主要解決用戶數據的語法表示問題。它將要交換數據的抽象語法(適合於某一用戶)轉換為傳送語法(適合於 OSI 內部使用)——公共表示方法。
應用層:為用戶應用進程訪問 OSI 提供介面,並負責信息的語義表示。