⑴ 內外網兩台電腦間如何快速方便傳文件
1,兩台電腦在兩個區域網,舉個例子,一個路由器的網關IP是192.168.0.1,一個是192.168.1.1
2,以上這種情況就是兩個不同的區域網,列印機和文件是沒法共享的,因為不在同一區域網
3,但可以做如下修改即可實現兩個不同區域網的列印機和文件共享:
a:任意選一個路由器把他的網關改為和另一個路由器在同一網段,比如A路由是192.1681.1,你就把B路由改為192.168.1.254,如果你的A路由是192.168.0.1,那你就把B路由改為192.168.0.254,其它同理
4,這樣你的兩個區域網就在同一網段了,但網關地址不一樣,所以也不會IP沖突,兩個網的列印機和文件也和共享和互相訪問!
⑵ 計算機網路的數據交換技術有四種,分別是
電路交換、報文交換、分組交換、信元交換
電路交換(CS:circuit
switching)是通信網中最早出現的一種交換方式,也是應用最普遍的一種交換方式,主要應用於電話通信網中,完成電話交換,已有100多年的歷史。
電話通信的過程是:首先摘機,聽到撥號音後撥號,交換機找尋被叫,向被叫振鈴同時向主叫送回鈴音,此時表明在電話網的主被叫之間已經建立起雙向的話音傳送通路;當被叫摘機應答,即可進入通話階段;在通話過程中,任何一方掛機,交換機毀拆除已建立的通話通路,並向另一方送忙音提示掛機,從而結束通話。
報文交換(Message
switching)是一種信息傳遞的方式。報文交換不要求在兩個通信結點之間建立專用通路。結點把要發送的信息組織成一個數據包——報文,該報文中含有目標結點的地址,完整的報文在網路中一站一站地向前傳送。
分組交換(PS:packet
switching)的實質就是將要傳輸的數據按一定長度分成很多組,為了准確的傳送到對方,每個組都打上標識,許多不同的數據分組在物理線路上以動態共享和復用方式進行傳輸,為了能夠充分利用資源,當數據分組傳送到交換機時,會暫存在交換機的存儲器中,然後根據當前線路的忙閑程度,交換機會動態分配合適的物理線路,繼續數據分組的傳輸,直到傳送到目的地。到達目地之後的數據分組再重新組合起來,形成一條完整的數據。
信元交換又叫ATM(非同步傳輸模式),是一種面向連接的快速分組交換技術,它是通過建立虛電路來進行數據傳輸的。
⑶ 兩台電腦直接數據對傳
方法很多。我在這里給您提供三個
方法一:(容易出錯或無法連接)就是將兩個電腦用一根網線相連,然後將需要傳輸的文件開啟共享,再到網上鄰居的工作組計算機中去找你需要傳輸的文件
方法二:(容易成功)將兩台電腦同連接一台路由器,路由器需要連接主線,其後步驟與方法一相同
方法三:利用軟體(成功率很高,至少我沒出過問題),我用的是飛鴿傳書,這軟體傳輸和QQ差不多,把文件夾直接發給別人就行了
使用USB Link電纜,USB Data Bridge Cable(USB數據橋電纜)。注意千萬不要用普通USB線互連,否則會燒壞主板。
一、安裝USB Link電纜
USB Link電纜的安裝包括硬體安裝和軟體安裝兩部分,其中軟體部分使用一個獨立的名為SMART-Linq的程序。在安裝過程中需要用到隨電纜所附帶的一張軟盤。
1. USB Link-100電纜的安裝 USB設備支持即插即用和熱插拔功能,USB Link-100也不例外。所以,隨時都可以將其插入計算機的USB介面上,不需要關閉計算機的電源。此時,計算機就會自動分配地址,用戶不需要進行任何物理參數的設置。在計算機的軟、硬體都能滿足USB功能的前提下,還要保證在CMOS參數設置中,將USB一項設置為有效(Enable)狀態。如果設置為禁止(Disable)狀態,USB設備將無法工作。
當第一次接入USB Link-100電纜時,系統會提示發現新硬體,接著出現安裝向導。將隨電纜附帶的軟盤插入軟碟機中接著選擇「自動搜索更好的驅動程序」一項,系統便從軟盤讀取所需的信息,接著出現選擇USB Bridge Cable的對話框。選擇好驅動程序名後,單擊「完成」按鈕,系統將從軟盤復制所需的驅動程序,最後出現提示信息,單擊「完成」結束。在另一台計算機上用同樣的方法進行硬體的安裝。
2. SMART-Linq程序的安裝SMART-Linq程序的安裝方法非常簡單,只須雙擊軟盤中的setup.exe文件,並一路單擊Next按鈕即可。安裝結束後,在「開始」→「程序」的下一級菜單中將會出現一個名為PC-Linq的菜單項,通過選擇該菜單下的項目便可進行有關的操作。同時,安裝程序還會在桌面上建立一個PC-Linq的快捷菜單。在另一台計算機上用同樣的方法安裝SMART-Linq程序。
二、 應用雙機互聯
經過以上硬體和軟體的安裝和設置後,用戶就可以使用USB Link電纜進行兩台計算機之間的通信了。包括文件的傳輸、共享對方計算機上的資源等。
當啟動A機的PC-Linq程序,會打開一個窗口(如圖11-11所示),在主窗口中有一個小窗口,顯示了A機中的文件目錄,此時,B機尚未啟動PC-Linq程序,不能看到B機上的文件。在主窗口的右下方有兩個小球為一紅一綠,其中綠色的小球表示當前的A機PC-Linq程序處於正常狀態,紅色小球表示與之相連的B機尚未啟動PC-Linq程序。
啟動A機的PC-Linq程序,運行B機中的PC-Linq程序,這時在兩台機器的PC-Linq主窗口中會同時打開兩個窗口(如圖11-12所示),分別顯示兩台主機中的文件目錄,上面的窗口為本機(Local Machine)文件目錄,下面的窗口為遠程機(Remote Machine)文件目錄。主窗口右下角的兩個小球都已經變為了綠色,說明兩台機器之間已經通過PC-Linq程序處於正常的連接狀態,就可以互相傳遞數據了。 1. 文件操作功能像Windows下的「資源管理器」一樣,PC-Linq窗口中的操作同樣支持復制、粘帖、創建、刪除和直接拖曳等功能。概括地說,PC-Linq的功能與「資源管理器」的功能相同。只不過「資源管理器」只能管理本地計算機上的資源,而PC-Linq窗口卻能同時管理兩台計算機上的資源。
三、在從計算機上拔掉USB Link電纜之前一定要先關閉本地的PC-Linq窗口,否則會因終斷連接而產生藍屏,甚至是死機。
⑷ 電腦怎樣通過互聯網傳輸數據
網路中數據傳輸過程
我們每天都在使用互聯網,我們電腦上的數據是怎麼樣通過互聯網傳輸到到另外的一台電腦上的呢?
我們知道現在的互聯網中使用的TCP/IP協議是基於,OSI(開放系統互聯)的七層參考模型的,(雖然不是完全符合)從上到下分別為 應用層 表示層 會話層 傳輸層 網路層 數據鏈路層和物理層。其中數據鏈路層又可是分為兩個子層分別為邏輯鏈路控制層(Logic Link Control,LLC )和介質訪問控制層((Media Access Control,MAC )也就是平常說的MAC層。LLC對兩個節點中的鏈路進行初始化,防止連接中斷,保持可靠的通信。MAC層用來檢驗包含在每個楨中的地址信息。在下面會分析到。還要明白一點路由器是在網路層的,而網卡在數據鏈路層。
我們知道,ARP(Address Resolution Protocol,地址轉換協議)被當作底層協議,用於IP地址到物理地址的轉換。在乙太網中,所有對IP的訪問最終都轉化為對網卡MAC地址的訪問。如果主機A的ARP列表中,到主機B的IP地址與MAC地址對應不正確,由A發往B數據包就會發向錯誤的MAC地址,當然無法順利到達B,結 果是A與B根本不能進行通信。
首先我們分析一下在同一個網段的情況。假設有兩台電腦分別命名為A和B,A需要相B發送數據的話,A主機首先把目標設備B的IP地址與自己的子網掩碼進行「與」操作,以判斷目標設備與自己是否位於同一網段內。如果目標設備在同一網段內,並且A沒有獲得與目標設備B的IP地址相對應的MAC地址信息,則源設備(A)以第二層廣播的形式(目標MAC地址為全1)發送ARP請求報文,在ARP請求報文中包含了源設備(A)與目標設備(B)的IP地址。同一網段中的所有其他設備都可以收到並分析這個ARP請求報文,如果某設備發現報文中的目標IP地址與自己的IP地址相同,則它向源設備發回ARP響應報文,通過該報文使源設備獲得目標設備的MAC地址信息。為了減少廣播量,網路設備通過ARP表在緩存中保存IP與MAC地址的映射信息。在一次 ARP的請求與響應過程中,通信雙方都把對方的MAC地址與IP地址的對應關系保存在各自的ARP表中,以在後續的通信中使用。ARP表使用老化機制,刪除在一段時間內沒有使用過的IP與MAC地址的映射關系。一個最基本的網路拓撲結構:
PC-A並不需要獲取遠程主機(PC-C)的MAC地址,而是把IP分組發向預設網關,由網關IP分組的完成轉發過程。如果源主機(PC-A)沒有預設網關MAC地址的緩存記錄,則它會通過ARP協議獲取網關的MAC地址,因此在A的ARP表中只觀察到網關的MAC地址記錄,而觀察不到遠程主機的 MAC地址。在乙太網(Ethernet)中,一個網路設備要和另一個網路設備進行直接通信,
除了知道目標設備的網路層邏輯地址(如IP地址)外,還要知道目標設備的第二層物理地址(MAC地址)。ARP協議的基本功能就是通過目標設備的IP地址,查詢目標設備的MAC地址,以保證通信的順利進行。 數據包在網路中的發送是一個及其復雜的過程,上圖只是一種很簡單的情況,中間沒有過多的中間節點,其實現實中只會比這個更復雜,但是大致的原理是一致的。
(1)PC-A要發送數據包到PC-C的話,如果PC-A沒有PC-C的IP地址,則PC-A首先要發出一個dns的請求,路由器A或者dns解析伺服器會給PC-A回應PC-C的ip地址,這樣PC-A關於數據包第三層的IP地址信息就全了:源IP地址:PC-A,目的ip地址:PC-C。
(2)接下來PC-A要知道如何到達PC-C,然後,PC-A會發送一個arp的地址解析請求,發送這個地址解析請求,不是為了獲得目標主機PC-C的MAC地址,而是把請求發送到了路由器A中,然後路由器A中的MAC地址會發送給源主機PC-A,這樣PC-A的數據包的第二層信息也全了,源MAC地址:PC-A的MAC地址,目的MAC地址:路由器A的MAC地址,
(3)然後數據會到達交換機A,交換機A看到數據包的第二層目的MAC地址,是去往路由器A的,就把數據包發送到路由器A,路由器A收到數據包,首先查看數據包的第三層ip目的地址,如果在自己的路由表中有去往PC-C的路由,說明這是一個可路由的數據包。 (4)然後路由器進行IP重組和分組的過程。首先更換此數據包的第二層包頭信息,路由器PC-A到達PC—C要經過一個廣域網,在這里會封裝很多廣域網相關的協議。其作用也是為了找下一階段的信息。同時對第二層和第三層的數據包重校驗。把數據經過Internet發送出去。最後經過很多的節點發送到目標主機PC_C中。
現在我們想一個問題,PC-A和PC-C的MAC地址如果是相同的話,會不會影響正常的通訊呢!答案是不會影響的,因為這兩個主機所處的區域網被廣域網分隔開了,通過對發包過程的分析可以看出來,不會有任何的問題。而如果在同一個區域網中的話,那麼就會產生通訊的混亂。當數據發送到交換機是,這是的埠信息會有兩個相同的MAC地址,而這時數據會發送到兩個主機上,這樣信息就會混亂。因此這也是保證MAC地址唯一性的一個理由。
我暫且按我的理解說說吧。
先看一下計算機網路OSI模型的七個層次:
┌—————┐
│ 應用層 │←第七層
├—————┤
│ 表示層 │
├—————┤
│ 會話層 │
├—————┤
│ 傳輸層 │
├—————┤
│ 網路層 │
├—————┤
│數據鏈路層│
├—————┤
│ 物理層 │←第一層
└—————┘
而我們現在用的網路通信協議TCP/IP協議者只劃分了四成:
┌—————┐
│ 應用層 │ ←包括OSI的上三層
├—————┤
│ 傳輸層 │
├—————┤
│ 網路層 │
├—————┤
│網路介面層 │←包括OSI模型的下兩層,也就是各種不同區域網。
└—————┘
兩台計算機通信所必須需要的東西:IP地址(網路層)+埠號(傳送層)。
兩台計算機通信(TCP/IP協議)的最精簡模型大致如下:
主機A---->路由器(零個或多個)---->主機B
舉個例子:主機A上的應用程序a想要和主機B上面的應用程序b通信,大致如下
程序a將要通信的數據發到傳送層,在傳送層上加上與該應用程序對應的通信埠號(主機A上不同的應用程序有不同的埠號),如果是用的TCP的話就加上TCP頭部,UDP就加上UDP頭部。
在傳送成加上頭部之後繼續嚮往下傳到網路層,然後加上IP頭部(標識主機地址以及一些其他的數據,這里就不詳細說了)。
然後傳給下層到數據鏈路層封裝成幀,最後到物理層變成二進制數據經過編碼之後向外傳輸。
在這個過程中可能會經過許多各種各樣的區域網,舉個例子:
主機A--->(區域網1--->路由器--->區域網2)--->主機B
這個模型比上面一個稍微詳細點,其中括弧裡面的可以沒有也可能有一個或多個,這個取決於你和誰通信,也就是主機B的位置。
主機A的數據已經到了具體的物理介質了,然後經過區域網1到了路由器,路由器接受主機A來的數據先經過解碼,還原成數據幀,然後變成網路層數據,這個過程也就是主機A的數據經過網路層、數據鏈路層、物理層在路由器上面的一個反過程。
然後路由器分析主機A來的數據的IP頭部(也就是在主機A的網路層加上的數據),並且修改頭部中的一些內容之後繼續把數據傳送出去。
一直到主機B收到數據為止,主機B就按照主機A處理數據的反過程處理數據,直到把數據交付給主機B的應用程序b。完成主機A到主機B的單方向通信。
這里的主機A、B只是為了書寫方便而已,可能通信的雙方不一定就是個人PC,伺服器與主機,主機與主機,伺服器與伺服器之間的通信大致都是這樣的。
再舉個例子,我們開網頁上網路:
就是我們的主機瀏覽器的這個應用程序和網路的伺服器之間的通信。應用成所用的協議就是HTTP,而伺服器的埠號就是熟知埠號80.
大致過程就是上面所說,其中的細節很復雜,任何一個細節都可以寫成一本書,對於非專業人員也沒有必要深究。
⑸ 怎樣把自己在其他電腦上的QQ聊天記錄通過網路傳回我的電腦
把QQ文件下的聊天記錄資料庫文件msgEx.db發達自己郵箱,再從郵箱下載到自己電腦
按照通信方式:1、廣播式傳輸網路、
2、點對點傳輸網路。
⑴按地理范圍分類
①區域網LAN(Local Area Network)
區域網地理范圍一般幾百米到10km之內,屬於小范圍內的連網。如一個建築物內、一個學校內、一個工廠的廠區內等。區域網的組建簡單、靈活,使用方便。
②城域網MAN(Metropolitan Area Network)
城域網地理范圍可從幾十公里到上百公里,可覆蓋一個城市或地區,是一種中等形式的網路。
③廣域網WAN(Wide Area Network)
廣域網地理范圍一般在幾千公里左右,屬於大范圍連網。如幾個城市,一個或幾個國家,是網路系統中的最大型的網路,能實現大范圍的資源共享,如國際性的Internet網路。
⑵按傳輸速率分類
網路的傳輸速率有快有慢,傳輸速率快的稱高速網,傳輸速率慢的稱低速網。傳輸速率的單位是b/s(每秒比特數,英文縮寫為bps)。一般將傳輸速率在Kb/s—Mb/s范圍的網路稱低速網,在Mb/s—Gb/s范圍的網稱高速網。也可以將Kb/s網稱低速網,將Mb/s網稱中速網,將Gb/s網稱高速網。
網路的傳輸速率與網路的帶寬有直接關系。帶寬是指傳輸信道的寬度,帶寬的單位是Hz(赫茲)。按照傳輸信道的寬度可分為窄帶網和寬頻網。一般將KHz—MHz帶寬的網稱為窄帶網,將MHz—GHz的網稱為寬頻網,也可以將kHz帶寬的網稱窄帶網,將MHz帶寬的網稱中帶網,將GHz帶寬的網稱寬頻網。通常情況下,高速網就是寬頻網,低速網就是窄帶網。
⑶按傳輸介質分類
傳輸介質是指數據傳輸系統中發送裝置和接受裝置間的物理媒體,按其物理形態可以劃分為有線和無線兩大類。
①有線網
傳輸介質採用有線介質連接的網路稱為有線網,常用的有線傳輸介質有雙絞線、同軸電纜和光導纖維。
●雙絞線是由兩根絕緣金屬線互相纏繞而成,這樣的一對線作為一條通信線路,由四對雙絞線構成雙絞線電纜。雙絞線點到點的通信距離一般不能超過100m。目前,計算機網路上使用的雙絞線按其傳輸速率分為三類線、五類線、六類線、七類線,傳輸速率在10Mbps到600Mbps之間,雙絞線電纜的連接器一般為RJ-45。
●同軸電纜由內、外兩個導體組成,內導體可以由單股或多股線組成,外導體一般由金屬編織網組成。內、外導體之間有絕緣材料,其阻抗為50Ω。同軸電纜分為粗纜和細纜,粗纜用DB-15連接器,細纜用BNC和T連接器。
●光纜由兩層折射率不同的材料組成。內層是具有高折射率的玻璃單根纖維體組成,外層包一層折射率較低的材料。光纜的傳輸形式分為單模傳輸和多模傳輸,單模傳輸性能優於多模傳輸。所以,光纜分為單模光纜和多模光纜,單模光纜傳送距離為幾十公里,多模光纜為幾公里。光纜的傳輸速率可達到每秒幾百兆位。光纜用ST或SC連接器。光纜的優點是不會受到電磁的干擾,傳輸的距離也比電纜遠,傳輸速率高。光纜的安裝和維護比較困難,需要專用的設備。
②無線網
採用無線介質連接的網路稱為無線網。目前無線網主要採用三種技術:微波通信,紅外線通信和激光通信。這三種技術都是以大氣為介質的。其中微波通信用途最廣,目前的衛星網就是一種特殊形式的微波通信,它利用地球同步衛星作中繼站來轉發微波信號,一個同步衛星可以覆蓋地球的三分之一以上表面,三個同步衛星就可以覆蓋地球上全部通信區域。
⑷按拓撲結構分類
計算機網路的物理連接形式叫做網路的物理拓撲結構。連接在網路上的計算機、大容量的外存、高速列印機等設備均可看作是網路上的一個節點,也稱為工作站。計算機網路中常用的拓撲結構有匯流排型、星型、環型等。
①匯流排拓撲結構
匯流排拓撲結構是一種共享通路的物理結構。這種結構中匯流排具有信息的雙向傳輸功能,普遍用於區域網的連接,匯流排一般採用同軸電纜或雙絞線。
匯流排拓撲結構的優點是:安裝容易,擴充或刪除一個節點很容易,不需停止網路的正常工作,節點的故障不會殃及系統。由於各個節點共用一個匯流排作為數據通路,信道的利用率高。但匯流排結構也有其缺點:由於信道共享,連接的節點不宜過多,並且匯流排自身的故障可以導致系統的崩潰。
②星型拓撲結構
星型拓撲結構是一種以中央節點為中心,把若干外圍節點連接起來的輻射式互聯結構。這種結構適用於區域網,特別是近年來連接的區域網大都採用這種連接方式。這種連接方式以雙絞線或同軸電纜作連接線路。
星型拓撲結構的特點是:安裝容易,結構簡單,費用低,通常以集線器(Hub)作為中央節點,便於維護和管理。中央節點的正常運行對網路系統來說是至關重要的。
③環型拓撲結構
環型拓撲結構是將網路節點連接成閉合結構。信號順著一個方向從一台設備傳到另一台設備,每一台設備都配有一個收發器,信息在每台設備上的延時時間是固定的。
這種結構特別適用於實時控制的區域網系統。
環型拓撲結構的特點是:安裝容易,費用較低,電纜故障容易查找和排除。有些網路系統為了提高通信效率和可靠性,採用了雙環結構,即在原有的單環上再套一個環,使每個節點都具有兩個接收通道。環型網路的弱點是,當節點發生故障時,整個網路就不能正常工作。
④樹型拓撲結構
樹型拓撲結構就像一棵「根」朝上的樹,與匯流排拓撲結構相比,主要區別在於匯流排拓撲結構中沒有「根」。這種拓撲結構的網路一般採用同軸電纜,用於軍事單位、政府部門等上、下界限相當嚴格和層次分明的部門。
樹型拓撲結構的特點:優點是容易擴展、故障也容易分離處理,缺點是整個網路對根的依賴性很大,一旦網路的根發生故障,整個系統就不能正常工作
⑺ 網路是通過什麼傳遞信息的
進入網際網路的電腦都遵循著一個稱為TCP/IP的傳遞信息的規則。在發送信息時,先把信息分成一個個的小包,在小包上標明要接收信息的計算機的「門牌號碼」,即IP地址。然後由網路中的稱做路由器的「指揮官」,根據「門牌號碼」確定這些信息小包傳送的路徑。當信息小包傳送到接收的計算機後,小包合並成原來信息的模樣,這樣就完成了信息的傳遞。
什麼是網路傳播,這是關繫到網路傳播學的任務和研究對象的首要問題。
在回答什麼是網路傳播之前,首先需要研討什麼是傳播。許多學者對於傳播作過種種描述和解釋,有的把它說成是「信息共享」,有的把它說成是「勸服影響」,也有的把它說成是「刺激反應」,還有人認為,傳播是人類傳遞或交流信息的社會性行為;等等。郭慶光教授在其新著《傳播學教程》中認為:「所謂傳播,即社會信息的傳遞或社會信息系統的運行」。
那麼何謂網路傳播?
中國現代媒體委員會常務副主任詩蘭認為,網路傳播有三個基本的特點:全球性、交互性、超文本鏈接方式。因此,其給網路傳播下的定義是:以全球海量信息為背景、以海量參與者為對象,參與者同時又是信息接收與發布者並隨時可以對信息作出反饋,它的文本形成與閱讀是在各種文本之間隨意鏈接、並以文化程度不同而形成各種意義的超文本中完成的(《國際新聞界》2000年第6期第49頁)。
有學者認為「網路傳播」是20世紀90年代出現於傳播學中的一個新名詞,是相對三大傳播媒體即報紙、廣播、電視之外的新傳播途徑和方式,是以多媒體、網路化、數字化技術為核心的國際互聯網路,也被稱作網路傳播,是現代信息革命的產物[1] )。
綜合來說,所謂網路傳播其實就是指通過計算機網路的人類信息(包括新聞、知識等信息)傳播活動。在網路傳播中的信息,以數字形式存貯在光、磁等存貯介質上,通過計算機網路高速傳播,並通過計算機或類似設備閱讀使用。網路傳播以計算機通信網路為基礎,進行信息傳遞、交流和利用,從而達到其社會文化傳播的目的。網路傳播的讀者人數巨大,可以通過互聯網高速傳播。
⑻ 電腦怎麼用網線傳東西
1、首先確定您的筆記本有網線介面,現在有很多輕薄本已經取消了這個介面,您可以通過購買擴展塢或者是USB網卡的方式連接網線;
2、將網線的接頭插入【RJ-45介面】,即計算機網路數據傳輸插頭,等到聽到卡住的聲音之後即可;
3、沒有網路連接的筆記本電腦系統右下角的狀態欄中,【Internet訪問】出現黃色感嘆號,點擊後選擇【網路設置】;
3、進入網路設置後選擇【撥號】,點擊其中的【設置新連接】,接下來將網路公司給予的賬號密碼輸入,保存後退出;
4、重新打開網路設置可以看到撥號選項中出現剛才設置的寬頻連接,點擊連接即可;
5、需要注意的是,如果用戶的有線網路不屬於撥號上網,而是光纖。如果是直接使用在光貓中引出來的網線,只需要直接插上就可以使用;如有異常,點擊紅色的大叉,啟用操作系統中的向導查找網路異常的原因,也可以打開【本地連接】,選擇【常規】中的【診斷】;
6、如果無法上網,可能是出現了DNS相關問題。使用【Win】+【R】打開【運行】,輸入ipconfig/flushdns回車執行命令,重建本地DNS緩存。
⑼ 計算機網路第三章(數據鏈路層)
3.1、數據鏈路層概述
概述
鏈路 是從一個結點到相鄰結點的一段物理線路, 數據鏈路 則是在鏈路的基礎上增加了一些必要的硬體(如網路適配器)和軟體(如協議的實現)
網路中的主機、路由器等都必須實現數據鏈路層
區域網中的主機、交換機等都必須實現數據鏈路層
從層次上來看數據的流動
僅從數據鏈路層觀察幀的流動
主機H1 到主機H2 所經過的網路可以是多種不同類型的
注意:不同的鏈路層可能採用不同的數據鏈路層協議
數據鏈路層使用的信道
數據鏈路層屬於計算機網路的低層。 數據鏈路層使用的信道主要有以下兩種類型:
點對點信道
廣播信道
區域網屬於數據鏈路層
區域網雖然是個網路。但我們並不把區域網放在網路層中討論。這是因為在網路層要討論的是多個網路互連的問題,是討論分組怎麼從一個網路,通過路由器,轉發到另一個網路。
而在同一個區域網中,分組怎麼從一台主機傳送到另一台主機,但並不經過路由器轉發。從整個互聯網來看, 區域網仍屬於數據鏈路層 的范圍
三個重要問題
數據鏈路層傳送的協議數據單元是 幀
封裝成幀
封裝成幀 (framing) 就是在一段數據的前後分別添加首部和尾部,然後就構成了一個幀。
首部和尾部的一個重要作用就是進行 幀定界 。
差錯控制
在傳輸過程中可能會產生 比特差錯 :1 可能會變成 0, 而 0 也可能變成 1。
可靠傳輸
接收方主機收到有誤碼的幀後,是不會接受該幀的,會將它丟棄
如果數據鏈路層向其上層提供的是不可靠服務,那麼丟棄就丟棄了,不會再有更多措施
如果數據鏈路層向其上層提供的是可靠服務,那就還需要其他措施,來確保接收方主機還可以重新收到被丟棄的這個幀的正確副本
以上三個問題都是使用 點對點信道的數據鏈路層 來舉例的
如果使用廣播信道的數據鏈路層除了包含上面三個問題外,還有一些問題要解決
如圖所示,主機A,B,C,D,E通過一根匯流排進行互連,主機A要給主機C發送數據,代表幀的信號會通過匯流排傳輸到匯流排上的其他各主機,那麼主機B,D,E如何知道所收到的幀不是發送給她們的,主機C如何知道發送的幀是發送給自己的
可以用編址(地址)的來解決
將幀的目的地址添加在幀中一起傳輸
還有數據碰撞問題
隨著技術的發展,交換技術的成熟,
在 有線(區域網)領域 使用 點對點鏈路 和 鏈路層交換機 的 交換式區域網 取代了 共享式區域網
在無線區域網中仍然使用的是共享信道技術
3.2、封裝成幀
介紹
封裝成幀是指數據鏈路層給上層交付的協議數據單元添加幀頭和幀尾使之成為幀
幀頭和幀尾中包含有重要的控制信息
發送方的數據鏈路層將上層交付下來的協議數據單元封裝成幀後,還要通過物理層,將構成幀的各比特,轉換成電信號交給傳輸媒體,那麼接收方的數據鏈路層如何從物理層交付的比特流中提取出一個個的幀?
答:需要幀頭和幀尾來做 幀定界
但比不是每一種數據鏈路層協議的幀都包含有幀定界標志,例如下面例子
前導碼
前同步碼:作用是使接收方的時鍾同步
幀開始定界符:表明其後面緊跟著的就是MAC幀
另外乙太網還規定了幀間間隔為96比特時間,因此,MAC幀不需要幀結束定界符
透明傳輸
透明
指某一個實際存在的事物看起來卻好像不存在一樣。
透明傳輸是指 數據鏈路層對上層交付的傳輸數據沒有任何限制 ,好像數據鏈路層不存在一樣
幀界定標志也就是個特定數據值,如果在上層交付的協議數據單元中, 恰好也包含這個特定數值,接收方就不能正確接收
所以數據鏈路層應該對上層交付的數據有限制,其內容不能包含幀定界符的值
解決透明傳輸問題
解決方法 :面向位元組的物理鏈路使用 位元組填充 (byte stuffing) 或 字元填充 (character stuffing),面向比特的物理鏈路使用比特填充的方法實現透明傳輸
發送端的數據鏈路層在數據中出現控制字元「SOH」或「EOT」的前面 插入一個轉義字元「ESC」 (其十六進制編碼是1B)。
接收端的數據鏈路層在將數據送往網路層之前刪除插入的轉義字元。
如果轉義字元也出現在數據當中,那麼應在轉義字元前面插入一個轉義字元 ESC。當接收端收到連續的兩個轉義字元時,就刪除其中前面的一個。
幀的數據部分長度
總結
3.3、差錯檢測
介紹
奇偶校驗
循環冗餘校驗CRC(Cyclic Rendancy Check)
例題
總結
循環冗餘校驗 CRC 是一種檢錯方法,而幀校驗序列 FCS 是添加在數據後面的冗餘碼
3.4、可靠傳輸
基本概念
下面是比特差錯
其他傳輸差錯
分組丟失
路由器輸入隊列快滿了,主動丟棄收到的分組
分組失序
數據並未按照發送順序依次到達接收端
分組重復
由於某些原因,有些分組在網路中滯留了,沒有及時到達接收端,這可能會造成發送端對該分組的重發,重發的分組到達接收端,但一段時間後,滯留在網路的分組也到達了接收端,這就造成 分組重復 的傳輸差錯
三種可靠協議
停止-等待協議SW
回退N幀協議GBN
選擇重傳協議SR
這三種可靠傳輸實現機制的基本原理並不僅限於數據鏈路層,可以應用到計算機網路體系結構的各層協議中
停止-等待協議
停止-等待協議可能遇到的四個問題
確認與否認
超時重傳
確認丟失
既然數據分組需要編號,確認分組是否需要編號?
要。如下圖所示
確認遲到
注意,圖中最下面那個數據分組與之前序號為0的那個數據分組不是同一個數據分組
注意事項
停止-等待協議的信道利用率
假設收發雙方之間是一條直通的信道
TD :是發送方發送數據分組所耗費的發送時延
RTT :是收發雙方之間的往返時間
TA :是接收方發送確認分組所耗費的發送時延
TA一般都遠小於TD,可以忽略,當RTT遠大於TD時,信道利用率會非常低
像停止-等待協議這樣通過確認和重傳機制實現的可靠傳輸協議,常稱為自動請求重傳協議ARQ( A utomatic R epeat re Q uest),意思是重傳的請求是自動進行,因為不需要接收方顯式地請求,發送方重傳某個發送的分組
回退N幀協議GBN
為什麼用回退N幀協議
在相同的時間內,使用停止-等待協議的發送方只能發送一個數據分組,而採用流水線傳輸的發送方,可以發送多個數據分組
回退N幀協議在流水線傳輸的基礎上,利用發送窗口來限制發送方可連續發送數據分組的個數
無差錯情況流程
發送方將序號落在發送窗口內的0~4號數據分組,依次連續發送出去
他們經過互聯網傳輸正確到達接收方,就是沒有亂序和誤碼,接收方按序接收它們,每接收一個,接收窗口就向前滑動一個位置,並給發送方發送針對所接收分組的確認分組,在通過互聯網的傳輸正確到達了發送方
發送方每接收一個、發送窗口就向前滑動一個位置,這樣就有新的序號落入發送窗口,發送方可以將收到確認的數據分組從緩存中刪除了,而接收方可以擇機將已接收的數據分組交付上層處理
累計確認
累計確認
優點:
即使確認分組丟失,發送方也可能不必重傳
減小接收方的開銷
減小對網路資源的佔用
缺點:
不能向發送方及時反映出接收方已經正確接收的數據分組信息
有差錯情況
例如
在傳輸數據分組時,5號數據分組出現誤碼,接收方通過數據分組中的檢錯碼發現了錯誤
於是丟棄該分組,而後續到達的這剩下四個分組與接收窗口的序號不匹配
接收同樣也不能接收它們,講它們丟棄,並對之前按序接收的最後一個數據分組進行確認,發送ACK4, 每丟棄一個數據分組,就發送一個ACK4
當收到重復的ACK4時,就知道之前所發送的數據分組出現了差錯,於是可以不等超時計時器超時就立刻開始重傳,具體收到幾個重復確認就立刻重傳,根據具體實現決定
如果收到這4個重復的確認並不會觸發發送立刻重傳,一段時間後。超時計時器超時,也會將發送窗口內以發送過的這些數據分組全部重傳
若WT超過取值范圍,例如WT=8,會出現什麼情況?
習題
總結
回退N幀協議在流水線傳輸的基礎上利用發送窗口來限制發送方連續發送數據分組的數量,是一種連續ARQ協議
在協議的工作過程中發送窗口和接收窗口不斷向前滑動,因此這類協議又稱為滑動窗口協議
由於回退N幀協議的特性,當通信線路質量不好時,其信道利用率並不比停止-等待協議高
選擇重傳協議SR
具體流程請看視頻
習題
總結
3.5、點對點協議PPP
點對點協議PPP(Point-to-Point Protocol)是目前使用最廣泛的點對點數據鏈路層協議
PPP協議是網際網路工程任務組IEIF在1992年制定的。經過1993年和1994年的修訂,現在的PPP協議已成為網際網路的正式標准[RFC1661,RFC1662]
數據鏈路層使用的一種協議,它的特點是:簡單;只檢測差錯,而不是糾正差錯;不使用序號,也不進行流量控制;可同時支持多種網路層協議
PPPoE 是為寬頻上網的主機使用的鏈路層協議
幀格式
必須規定特殊的字元作為幀定界符
透明傳輸
必須保證數據傳輸的透明性
實現透明傳輸的方法
面向位元組的非同步鏈路:位元組填充法(插入「轉義字元」)
面向比特的同步鏈路:比特填充法(插入「比特0」)
差錯檢測
能夠對接收端收到的幀進行檢測,並立即丟棄有差錯的幀。
工作狀態
當用戶撥號接入 ISP 時,路由器的數據機對撥號做出確認,並建立一條物理連接。
PC 機向路由器發送一系列的 LCP 分組(封裝成多個 PPP 幀)。
這些分組及其響應選擇一些 PPP 參數,並進行網路層配置,NCP 給新接入的 PC 機
分配一個臨時的 IP 地址,使 PC 機成為網際網路上的一個主機。
通信完畢時,NCP 釋放網路層連接,收回原來分配出去的 IP 地址。接著,LCP 釋放數據鏈路層連接。最後釋放的是物理層的連接。
可見,PPP 協議已不是純粹的數據鏈路層的協議,它還包含了物理層和網路層的內容。
3.6、媒體接入控制(介質訪問控制)——廣播信道
媒體接入控制(介質訪問控制)使用一對多的廣播通信方式
Medium Access Control 翻譯成媒體接入控制,有些翻譯成介質訪問控制
區域網的數據鏈路層
區域網最主要的 特點 是:
網路為一個單位所擁有;
地理范圍和站點數目均有限。
區域網具有如下 主要優點 :
具有廣播功能,從一個站點可很方便地訪問全網。區域網上的主機可共享連接在區域網上的各種硬體和軟體資源。
便於系統的擴展和逐漸地演變,各設備的位置可靈活調整和改變。
提高了系統的可靠性、可用性和殘存性。
數據鏈路層的兩個子層
為了使數據鏈路層能更好地適應多種區域網標准,IEEE 802 委員會就將區域網的數據鏈路層拆成 兩個子層 :
邏輯鏈路控制 LLC (Logical Link Control)子層;
媒體接入控制 MAC (Medium Access Control)子層。
與接入到傳輸媒體有關的內容都放在 MAC子層,而 LLC 子層則與傳輸媒體無關。 不管採用何種協議的區域網,對 LLC 子層來說都是透明的。
基本概念
為什麼要媒體接入控制(介質訪問控制)?
共享信道帶來的問題
若多個設備在共享信道上同時發送數據,則會造成彼此干擾,導致發送失敗。
隨著技術的發展,交換技術的成熟和成本的降低,具有更高性能的使用點對點鏈路和鏈路層交換機的交換式區域網在有線領域已完全取代了共享式區域網,但由於無線信道的廣播天性,無線區域網仍然使用的是共享媒體技術
靜態劃分信道
信道復用
頻分復用FDM (Frequency Division Multiplexing)
將整個帶寬分為多份,用戶在分配到一定的頻帶後,在通信過程中自始至終都佔用這個頻帶。
頻分復用 的所有用戶在同樣的時間 佔用不同的帶寬資源 (請注意,這里的「帶寬」是頻率帶寬而不是數據的發送速率)。