① 關於計算機網路的crc計算
我們知道,一台主機向另外一台主機發送報文的時候,需要一層層經過自己的協議棧進行數據封裝,到達最後一層(四層協議的網路介面層)時需要在幀尾部添加FCS校驗碼(通過CRC演算法得出)。當對端主機收到時,在接收端同樣通過CRC演算法進行驗證,確認傳輸過程中是否出現錯誤。它只能確認一個幀是否存在比特差錯,但沒有提供解決措施。
循環冗餘校驗的原理
在發送端,先把數據劃分為組(即:一幀)。假定每組 k 個比特。
在每組後面,添加供差錯檢測用的 n 位冗餘碼一起發送。即:實際發送長度為:k+n 比特。
發送前雙方協商n+1位的除數P,方便接收方收到後校驗。
給K比特的數據添加除數減一個0(P-1)作為被除數,與第三步確定的除數做「模2除法」。得出的余數即FCS校驗序列,它的位數也必須是(P-1)。
將FCS校驗序列添加至K個比特位的後面發送出去。
接收方對接收到的每一幀進行校驗,若得出的余數 R = 0,則判定這個幀沒有差錯,就接受(accept)。若余數 R ≠ 0,則判定這個幀有差錯,就丟棄。
對「模2除法」進行說明:
「模2除法」與「算術除法」類似,但它既不向上位借位,也不比較除數和被除數的相同位數值的大小,只要以相同位數進行相除即可。模2加法運算為:1+1=0,0+1=1,0+0=0,無進位,也無借位;模2減法運算為:1-1=0,0-1=1,1-0=1,0-0=0,也無進位,無借位。相當於二進制中的邏輯異或運算。
計算示例
那麼接收方拿到的就是:101001001。再以它為被除數,1101為除數進行「模2除法」。
② 計算機網路,CRC檢錯,兩種錯誤均可發展什麼意思,是接收端可以發現嗎還是不可以啊
發送端進行crc校驗(計算後添加後綴比特),接收後重新計算,如果出錯表示傳輸有誤,否則正確。CRC編碼通常在通信中用於錯誤發現。
③ 計算機網路原理的計算題(CRC校驗和數據傳輸問題)
第一題:進行模2除法時被除數錯了,應該是M*2^4,不是M*2^5,因為多項式是4階的,在M後面添4個0
④ crc 計算機網路
2017年12月29日,星期五,
兄弟,我先給你簡單再捋一遍CRC編碼的概念和計算公式,原理明白了,以後不管碰到什麼樣的題,你都會迎刃而解了。
首先,需要知道如下幾個概念,
CRC編碼,就是你題目中所說的「待發字串」,它是經加工後帶有CRC校驗的待發送信息,
CRC校驗碼,就是你題目中所說的「CRC循環冗餘碼」,以下都簡稱為CRC校驗碼,它是通過CRC規則計算得來,
多項式,即真實信息,就是未經CRC編碼規則處理的原始的信息,就是你題目中說的「已知信息碼」,原始的真實信息有兩種表現形式,以本題為例,
a、原始信息的 二進制字串(形式):1000100101,
b、原始信息的 多項式(形式):X^9+X^5+X^2+1,
X^9+X^5+X^2+1多項式,就是由原始信息的二進制形式1000100101得來的,多項式中每一個因數都對應二進制形式 1000100101 中值為1的那一位,X^9 X^5 X^2就是2^9+2^5+2^2,那表示二進制數的權位,
1000100101
1*2^90*2^80*2^70*2^6 1*2^5 0*2^4 0*2^3 1*2^2 0*2^11*2^0
2^0=1...2^9=1 000 000 000,凡是二進制字串中值為1的權位都出現在了多項式中,例如,二進制字串最高位(左1)的1,就是2^9,所以它出現在了多項式中,形狀為X^9,而二進制數串中值為0的權位都沒有出現在多項式中,可以數一下,二進制數串中有4個1,所以對應的多項式中有4個因子:X^9、X^5、X^2、1,其中多項式的最後一個因子1,其實就是X^0,而我們都知道,任何數的0次冪都是1(0除外),可以看出,這兩種形式是等價的,即1000100101=X^9+X^5+X^2+1,當我們再遇到多項式時,就是去數原始信息(1000100101)中的1,然後把它的值為1的權位放到一起,寫成式子(X^9+X^5+X^2+1),兩者意義是一樣的,從二進制形式能推導出多項式,也可以從多項式推導出二進制形式,
生成多項式,就是你題目中提到的「G(x)=X^5+X^4+X^2+1」,生成多項式也可以寫成二進制形式,X^5+X^4+X^2+1其對應的二進制形式:110101,
通常,我們為了方便說明問題將生成多項式叫做:G(x),這里請注意,需要將
「生成多項式」和「多項式」進行區分,G(x)中的G就是generator polynomial,生成多項式的意思,
多項式:指的是原始信息1000100101中所有權位為1的權位寫在一起的形式X^9+X^5+X^2+1
生成多項式:是人為指定的多項式,由編碼人指定的東西,本例被人為指定成X^5+X^4+X^2+1即 110101 ,這個生成多項式是人為指定的,不是固定的,個人理解你指定成X^5+X^3+X^2+1也行,制定成X^5+X^4+X^3+X^2+1也行,
好了,接下來,我們要說最關鍵的CRC的定義和計算過程了,
CRC的定義:
多項式*2^(G(x)的最高次冪指數,你給的圖片題目中G(x)的最高次冪指數是5)/G(x)=CRC校驗碼;
用文字表達,就是原始數據信息乘以,2的 【生成多項式中最高冪指數】 次冪,乘2的多少次冪,就是在右邊加幾個0,比如乘以2^2,就是在右邊加2個零,因為是二進制數,所以乘幾個2就是加幾個零,和十進制數乘幾個10就是加幾個零道理一樣,然後再去除以生成多項式,請注意,這里的除,不是數學中的除法,而是指計算機中的模二除運算,實際上就是邏輯異或運算,說白了,就是將除數和被除數高位,進行左對齊後,相同為0,不同為1,然後一直除下去,直到得到最後的余數為止,這個余數就是我們需要的CRC校驗碼,而且這個最後得到的余數,取幾位由生成多項式中最高冪指數決定,最高冪指數是5就取5位,最高冪指數是6就取6位,最高冪指數是4就取4位,是根據生成多項式的最高次冪來定取幾位的.本例中,最高次冪是5,所以,最後的余數是5位二進制數,
X^5+X^4+X^2+1寫成二進制就是: 110101
你的圖片題目中,G(x)=X^5+X^4+X^2+1,也就是生成多項式是110101,
結合本題,我們來做一遍,原始數據:1000100101,生成多項式:110101,根據上面的規則有,
1000100101*2^5=1000100101 00000
把原始值右邊加上5個零:1000100101 00000之後,去除以生成多項式:110101
1000100101 00000
110101
----------------------------
0101110101 00000
左對齊,並開始按位異或,得0101110101 00000,
進行第二次除運算:
101110101 00000
110101
--------------------------
011011101 00000
左對齊,再按位異或,得到011011101 00000
開始第三次除運算:
11011101 00000
110101
--------------------
00001001 00000
左對齊,再按位異或,得到00001001 00000
進行第四次除運算:
100100000
110101
-----------------
010001000
左對齊,再異或,得到010001000
進行第五次除運算:
10001000
110101
------------
01011100
左對齊,再異或,得到01011100
進行第六次除運算:
1011100
110101
-------------
0110110
左對齊,再異或,得到0110110
進行第七次,最後一次除運算:
110110
110101
------------
000011
最終余數為000011,而由G(x)的最高次冪X^5的冪指數決定了,CRC校驗碼取5位,因此,最終得到的CRC校驗碼為:00011,
多項式*2^(G(x)的最高次冪指數,本例中G(x)的最高次冪指數是5)+G(x)=最終在物理線路上傳送的CRC編碼待發字串,
用文字表達就是,原始數據乘以,2的 【生成多項式中最高冪指數】 次冪,然後再加上生成多項式,最終得到要在線路中傳送的CRC編碼待發字串,
接著,以本例進行餘下的計算,原始數據:1000100101,CRC校驗碼(CRC循環冗餘碼)為:00011,
根據上面的定義,有:
1000100101*2^5=1000100101 00000,
1000100101 00000
+ 00011
----------------------
100010010100011
所以最終的「待發字串」CRC編碼為:100010010100011
⑤ CRC是什麼意思
循環冗餘校驗(Cyclic Rendancy Check, CRC)是一種根據網路數據包或計算機文件等數據產生簡短固定位數校驗碼的一種信道編碼技術,主要用來檢測或校驗數據傳輸或者保存後可能出現的錯誤。它是利用除法及余數的原理來作錯誤偵測的。
循環冗餘校驗同其他差錯檢測方式一樣,通過在要傳輸的k比特數據D後添加(n-k)比特冗餘位(又稱幀檢驗序列,Frame Check Sequence,FCS)F形成n比特的傳輸幀T,再將其發送出去。
(5)計算機網路crc擴展閱讀
在數據傳輸過程中,無論傳輸系統的設計再怎麼完美,差錯總會存在,這種差錯可能會導致在鏈路上傳輸的一個或者多個幀被破壞,從而接受方接收到錯誤的數據。
為盡量提高接受方收到數據的正確率,在接收方接收數據之前需要對數據進行差錯檢測,當且僅當檢測的結果為正確時接收方才真正收下數據。
檢測的方式有多種,常見的有奇偶校驗、網際網路校驗和循環冗餘校驗等。循環冗餘校驗是一種用於校驗通信鏈路上數字傳輸准確性的計算方法。
參考資料來源:網路-CRC
⑥ 在計算機網路中什麼是crc校驗和,怎麼計算
計算機網路原理的計算題(crc校驗和數據傳輸問題)第1題:設要發送的二進制數據為10110011,若採用crc校驗方法,生成多項式為x^4+x^3+1,度求出實際發送的二進制數字序列。(要求寫出計算
計算機網路原理的計算題(crc校驗和數據傳輸問題)
第1題:設要發送的二進制數據為10110011,若採用crc校驗方法,生成多項式為x^4+x^3+1,度求出實際發送的二進制數字序列。(要求寫出計算過程)
這是自考08年四月份的試題,我總是跟答案算的不一樣。
答案是:待發送的序列m=10110011,除數p=11001,m*2^5與除數p進行模2除法運算,得余數r=1000,所以要發送的二進制序列為:101100111000
我不明白為什麼m要乘以2的5次方,我是用101100110000除以11001得到的余數是100。
第2題:一條長度為100km的點對點鏈路,對於一個100位元組的分組,帶寬為多大時傳播延遲等於發送延遲?(信道傳輸速度為2*10^8m/s)
答案是:
傳播延遲為:100km/(2*10^8m/s)=50ms
發送延遲等於傳播延遲時:100/c=50ms
則信道傳輸速率:c=200kbps
⑦ 什麼是crc.他有什麼優缺點
一、循環冗餘碼校驗英文名稱為Cyclical Rendancy
Check,簡稱CRC。它是利用除法及余數的原理來作錯誤偵測(Error
Detecting)的。實際應用時,發送裝置計算出CRC值並隨數據一同發送給接收裝置,接收裝置對收到的數據重新計算CRC並與收到的CRC相比較,若兩個CRC值不同,則說明數據通訊出現錯誤。
根據應用環境與習慣的不同,CRC又可分為以下幾種標准:
①CRC-12碼;
②CRC-16碼;
③CRC-CCITT碼;
④CRC-32碼。
CRC-12碼通常用來傳送6-bit字元串。CRC-16及CRC-CCITT碼則用是來傳送8-bit字元,其中CRC-16為美國採用,而CRC-CCITT為歐洲國家所採用。CRC-32碼大都被採用在一種稱為Point-to-Point的同步傳輸中。
下面以最常用的CRC-16為例來說明其生成過程。
CRC-16碼由兩個位元組構成,在開始時CRC寄存器的每一位都預置為1,然後把CRC寄存器與8-bit的數據進行異或,之後對CRC寄存器從高到低進行移位,在最高位(MSB)的位置補零,而最低位(LSB,移位後已經被移出CRC寄存器)如果為1,則把寄存器與預定義的多項式碼進行異或,否則如果LSB為零,則無需進行異或。重復上述的由高至低的移位8次,第一個8-bit數據處理完畢,用此時CRC寄存器的值與下一個8-bit數據異或並進行如前一個數據似的8次移位。所有的字元處理完成後CRC寄存器內的值即為最終的CRC值。
下面為CRC的計算過程:
1.設置CRC寄存器,並給其賦值FFFF(hex)。
2.將數據的第一個8-bit字元與16位CRC寄存器的低8位進行異或,並把結果存入CRC寄存器。
3.CRC寄存器向右移一位,MSB補零,移出並檢查LSB。
4.如果LSB為0,重復第三步;若LSB為1,CRC寄存器與多項式碼相異或。
5.重復第3與第4步直到8次移位全部完成。此時一個8-bit數據處理完畢。
6.重復第2至第5步直到所有數據全部處理完成。
7.最終CRC寄存器的內容即為CRC值。
⑧ 計算機網路原理中求CRC校驗碼。
01100。演算法你可以用手算,或者用代碼計算,代碼分按位和按位元組。手算演算法是:多項式為101101你在信息的後面補5個0信息碼變為1101101100000這時開始用多項式對上面的信息碼進行異或操作,要打的話很麻煩。我只把沒一次運算的結果寫一下1:011011(注意,前面一位已經為零,這時,要在此數後面補一個數,也就是說,現在已經對8為信息碼操作了一位)移位以後變為110111。(此時的首位又為1,再與多項式異或,下面的類似)2:0110103:0110004:0111015:0101116:000011 注意此時的信息碼已經被操作了5次了,就是說還有3位沒有操作,這時把這個數左移3位就好了,因為他的前3位都為零,所以最後的crc碼為01100整個要發送的數據為11011011+01100中間算的可能有錯誤,開始看crc的時候可能會很難懂,看看代碼很不錯的
⑨ 計算機網路crc演算法。
發送的數據是原數據+余數
接受端收到數據後除以多項式,有餘數說明數據在傳輸的時候改變(如果數據改變了碰巧余數還為0,那隻能說明運氣太差了。。)