⑴ 關於計算機網路的crc計算
我們知道,一台主機向另外一台主機發送報文的時候,需要一層層經過自己的協議棧進行數據封裝,到達最後一層(四層協議的網路介面層)時需要在幀尾部添加FCS校驗碼(通過CRC演算法得出)。當對端主機收到時,在接收端同樣通過CRC演算法進行驗證,確認傳輸過程中是否出現錯誤。它只能確認一個幀是否存在比特差錯,但沒有提供解決措施。
循環冗餘校驗的原理
在發送端,先把數據劃分為組(即:一幀)。假定每組 k 個比特。
在每組後面,添加供差錯檢測用的 n 位冗餘碼一起發送。即:實際發送長度為:k+n 比特。
發送前雙方協商n+1位的除數P,方便接收方收到後校驗。
給K比特的數據添加除數減一個0(P-1)作為被除數,與第三步確定的除數做「模2除法」。得出的余數即FCS校驗序列,它的位數也必須是(P-1)。
將FCS校驗序列添加至K個比特位的後面發送出去。
接收方對接收到的每一幀進行校驗,若得出的余數 R = 0,則判定這個幀沒有差錯,就接受(accept)。若余數 R ≠ 0,則判定這個幀有差錯,就丟棄。
對「模2除法」進行說明:
「模2除法」與「算術除法」類似,但它既不向上位借位,也不比較除數和被除數的相同位數值的大小,只要以相同位數進行相除即可。模2加法運算為:1+1=0,0+1=1,0+0=0,無進位,也無借位;模2減法運算為:1-1=0,0-1=1,1-0=1,0-0=0,也無進位,無借位。相當於二進制中的邏輯異或運算。
計算示例
那麼接收方拿到的就是:101001001。再以它為被除數,1101為除數進行「模2除法」。
⑵ crc怎麼樣
還可以。循環冗餘校驗(Cyclic Rendancy Check, CRC)是一種根據網路數據包或計算機文件等數據產生簡短固定位數校驗碼的一種信道編碼技術,主要用來檢測或校驗數據傳輸或者保存後可能出現的錯誤。它是利用除法及余數的原理來作錯誤偵測的。
在計算機網路通信中運用CRC校驗時相對於其他校驗方法就有一定的優勢。CRC可以高比例的糾正信息傳輸過程中的錯誤,可以在極短的時間內完成數據校驗碼的計算,並迅速完成糾錯過程,通過數據包自動重發的方式使得計算機的通信速度大幅提高,對通信效率和安全提供了保障。
由於 CRC 演算法檢驗的檢錯能力極強,且檢測成本較低,因此在對於編碼器和電路的檢測中使用較為廣泛。從檢錯的正確率與速度、成本等方面,都比奇偶校驗等校驗方式具有優勢。因而,CRC 成為計算機信息通信領域最為普遍的校驗方式。
⑶ crc協議是在什麼層實現的
crc協議是在802.3協議族層實現的。
從A點經過網路傳輸數據到B點,A點的原始數據經過CRC演算法會得到一個CRC校驗值,這個值會附帶在數據尾部,和數據一起傳輸過來,然後B點收到數據後,會對數據進行CRC校驗,看得到的值和從數據尾部CRC值一不一樣,一樣就代表數據沒有損壞或者給人篡改過。
電路交換數據業務:
傳送速率為9.6kb/s。語音通信採用CSD技術。在這種情況下,語音通話和其他的數據傳送,不能同時進行。如:打電話就不能上網,上網就不能打電話。CSD採取電路交換的方式,手機撥號的WAP業務就是電路交換的方式。它適合少量的、速度較慢的數據傳輸業務。CSD收取撥號時長通信費。
CDMA1X技術允許用戶通過手機快速下載鈴聲和圖片,實現屏幕保護動畫,並能使用手機進行動態游戲、多媒體聊天、卡拉OK,享受電子書籍、股票信息、移動銀行、電子交易等各種信息服務。CDMA1X手機上網的傳輸速率可達每秒鍾144Kb,比現有CDMA產品高出10倍。
⑷ CRC演算法模擬 計算機網路基礎課程 高分求解 正解追加200
引言
CRC的全稱為Cyclic Rendancy Check,中文名稱為循環冗餘校驗。它是一類重要的線性分組碼,編碼和解碼方法簡單,檢錯和糾錯能力強,在通信領域廣泛地用於實現差錯控制。實際上,除數據通信外,CRC在其它很多領域也是大有用武之地的。例如我們讀軟盤上的文件,以及解壓一個ZIP文件時,偶爾會碰到「Bad CRC」錯誤,由此它在數據存儲方面的應用可略見一斑。
差錯控制理論是在代數理論基礎上建立起來的。這里我們著眼於介紹CRC的演算法與實現,對原理只能捎帶說明一下。若需要進一步了解線性碼、分組碼、循環碼、糾錯編碼等方面的原理,可以閱讀有關資料。
利用CRC進行檢錯的過程可簡單描述為:在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的r位監督碼(CRC碼),附在原始信息後邊,構成一個新的二進制碼序列數共k+r位,然後發送出去。在接收端,根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。這個規則,在差錯控制理論中稱為「生成多項式」。
1 代數學的一般性演算法
在代數編碼理論中,將一個碼組表示為一個多項式,碼組中各碼元當作多項式的系數。例如 1100101 表示為
1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。
設編碼前的原始信息多項式為P(x),P(x)的最高冪次加1等於k;生成多項式為G(x),G(x)的最高冪次等於r;CRC多項式為R(x);編碼後的帶CRC的信息多項式為T(x)。
發送方編碼方法:將P(x)乘以xr(即對應的二進制碼序列左移r位),再除以G(x),所得余式即為R(x)。用公式表示為
T(x)=xrP(x)+R(x)
接收方解碼方法:將T(x)除以G(x),如果余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤。
舉例來說,設信息碼為1100,生成多項式為1011,即P(x)=x3+x2,G(x)=x3+x+1,計算CRC的過程為
xrP(x) x3(x3+x2) x6+x5 x
-------- = ---------- = -------- = (x3+x2+x) + --------
G(x) x3+x+1 x3+x+1 x3+x+1
即 R(x)=x。注意到G(x)最高冪次r=3,得出CRC為010。
如果用豎式除法,計算過程為
1110
-------
1011 /1100000 (1100左移3位)
1011
----
1110
1011
-----
1010
1011
-----
0010
0000
----
010
因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010
如果傳輸無誤,
T(x) x6+x5+x
------ = --------- = x3+x2+x,
G(x) x3+x+1
無余式。回頭看一下上面的豎式除法,如果被除數是1100010,顯然在商第三個1時,就能除盡。
上述推算過程,有助於我們理解CRC的概念。但直接編程來實現上面的演算法,不僅繁瑣,效率也不高。實際上在工程中不會直接這樣去計算和驗證CRC。
下表中列出了一些見於標準的CRC資料:
名稱 生成多項式 簡記式* 應用舉例
CRC-4 x4+x+1 ITU G.704
CRC-12 x12+x11+x3+x+1
CRC-16 x16+x12+x2+1 1005 IBM SDLC
CRC-ITU** x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS
CRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS
CRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP
* 生成多項式的最高冪次項系數是固定的1,故在簡記式中,將最高的1統一去掉了,如04C11DB7實際上是104C11DB7。
** 前稱CRC-CCITT。ITU的前身是CCITT。
2 硬體電路的實現方法
多項式除法,可用除法電路來實現。除法電路的主體由一組移位寄存器和模2加法器(異或單元)組成。以CRC-ITU為例,它由16級移位寄存器和3個加法器組成,見下圖(編碼/解碼共用)。編碼、解碼前將各寄存器初始化為"1",信息位隨著時鍾移入。當信息位全部輸入後,從寄存器組輸出CRC結果。
3 比特型演算法
上面的CRC-ITU除法電路,完全可以用軟體來模擬。定義一個寄存器組,初始化為全"1"。依照電路圖,每輸入一個信息位,相當於一個時鍾脈沖到來,從高到低依次移位。移位前信息位與bit0相加產生臨時位,其中bit15移入臨時位,bit10、bit3還要加上臨時位。當全部信息位輸入完成後,從寄存器組取出它們的值,這就是CRC碼。
typedef unsigned char bit;
typedef unsigned char byte;
typedef unsigned short u16;
typedef union {
u16 val;
struct {
u16 bit0 : 1;
u16 bit1 : 1;
u16 bit2 : 1;
u16 bit3 : 1;
u16 bit4 : 1;
u16 bit5 : 1;
u16 bit6 : 1;
u16 bit7 : 1;
u16 bit8 : 1;
u16 bit9 : 1;
u16 bit10 : 1;
u16 bit11 : 1;
u16 bit12 : 1;
u16 bit13 : 1;
u16 bit14 : 1;
u16 bit15 : 1;
} bits;
} CRCREGS;
// 寄存器組
CRCREGS regs;
// 初始化CRC寄存器組:移位寄存器置為全"1"
void crcInitRegisters()
{
regs.val = 0xffff;
}
// CRC輸入一個bit
void crcInputBit(bit in)
{
bit a;
a = regs.bits.bit0 ^ in;
regs.bits.bit0 = regs.bits.bit1;
regs.bits.bit1 = regs.bits.bit2;
regs.bits.bit2 = regs.bits.bit3;
regs.bits.bit3 = regs.bits.bit4 ^ a;
regs.bits.bit4 = regs.bits.bit5;
regs.bits.bit5 = regs.bits.bit6;
regs.bits.bit6 = regs.bits.bit7;
regs.bits.bit7 = regs.bits.bit8;
regs.bits.bit8 = regs.bits.bit9;
regs.bits.bit9 = regs.bits.bit10;
regs.bits.bit10 = regs.bits.bit11 ^ a;
regs.bits.bit11 = regs.bits.bit12;
regs.bits.bit12 = regs.bits.bit13;
regs.bits.bit13 = regs.bits.bit14;
regs.bits.bit14 = regs.bits.bit15;
regs.bits.bit15 = a;
}
// 輸出CRC碼(寄存器組的值)
u16 crcGetRegisters()
{
return regs.val;
}
crcInputBit中一步一步的移位/異或操作,可以進行簡化:
void crcInputBit(bit in)
{
bit a;
a = regs.bits.bit0 ^ in;
regs.val >>= 1;
if(a) regs.val ^= 0x8408;
}
細心的話,可以發現0x8408和0x1021(CRC-ITU的簡記式)之間的關系。由於我們是從低到高輸出比特流的,將0x1021左右反轉就得到0x8408。將生成多項式寫成 G(x)=1+x5+x12+x16,是不是更好看一點?
下面是一個典型的PPP幀。最後兩個位元組稱為FCS(Frame Check Sequence),是前面11個位元組的CRC。
FF 03 C0 21 04 03 00 07 0D 03 06 D0 3A
我們來計算這個PPP幀的CRC,並驗證它。
byte ppp[13] = {0xFF, 0x03, 0xC0, 0x21, 0x04, 0x03, 0x00, 0x07, 0x0D, 0x03, 0x06, 0x00, 0x00};
int i,j;
u16 result;
/////////// 以下計算FCS
// 初始化
crcInitRegisters();
// 逐位輸入,每個位元組低位在先,不包括兩個FCS位元組
for(i = 0; i < 11; i++)
{
for(j = 0; j < 8; j++)
{
crcInputBit((ppp[i] >> j) & 1);
}
}
// 得到CRC:將寄存器組的值求反
result = ~crcGetRegisters();
// 填寫FCS,先低後高
ppp[11] = result & 0xff;
ppp[12] = (result >> 8) & 0xff;
/////////// 以下驗證FCS
// 初始化
crcInitRegisters();
// 逐位輸入,每個位元組低位在先,包括兩個FCS位元組
for(i = 0; i < 13; i++)
{
for(j = 0; j < 8; j++)
{
crcInputBit((ppp[i] >> j) & 1);
}
}
// 得到驗證結果
result = crcGetRegisters();
可以看到,計算出的CRC等於0x3AD0,與原來的FCS相同。驗證結果等於0。初始化為全"1",以及將寄存器組的值求反得到CRC,都是CRC-ITU的要求。事實上,不管初始化為全"1"還是全"0",計算CRC取反還是不取反,得到的驗證結果都是0。
4 位元組型演算法
比特型演算法逐位進行運算,效率比較低,不適用於高速通信的場合。數字通信系統(各種通信標准)一般是對一幀數據進行CRC校驗,而位元組是幀的基本單位。最常用的是一種按位元組查表的快速演算法。該演算法基於這樣一個事實:計算本位元組後的CRC碼,等於上一位元組余式CRC碼的低8位左移8位,加上上一位元組CRC右移8位和本位元組之和後所求得的CRC碼。如果我們把8位二進制序列數的CRC(共256個)全部計算出來,放在一個表裡 ,編碼時只要從表中查找對應的值進行處理即可。
CRC-ITU的計算演算法如下:
a.寄存器組初始化為全"1"(0xFFFF)。
b.寄存器組向右移動一個位元組。
c.剛移出的那個位元組與數據位元組進行異或運算,得出一個指向值表的索引。
d.索引所指的表值與寄存器組做異或運算。
f.數據指針加1,如果數據沒有全部處理完,則重復步驟b。
g.寄存器組取反,得到CRC,附加在數據之後。
CRC-ITU的驗證演算法如下:
a.寄存器組初始化為全"1"(0xFFFF)。
b.寄存器組向右移動一個位元組。
c.剛移出的那個位元組與數據位元組進行異或運算,得出一個指向值表的索引。
d.索引所指的表值與寄存器組做異或運算。
e.數據指針加1,如果數據沒有全部處理完,則重復步驟b (數據包括CRC的兩個位元組)。
f.寄存器組的值是否等於「Magic Value」(0xF0B8),若相等則通過,否則失敗。
下面是通用的CRC-ITU查找表以及計算和驗證CRC的C語言程序:
// CRC-ITU查找表
const u16 crctab16[] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78,
};
// 計算給定長度數據的16位CRC。
u16 GetCrc16(const byte* pData, int nLength)
{
u16 fcs = 0xffff; // 初始化
while(nLength>0)
{
fcs = (fcs >> 8) ^ crctab16[(fcs ^ *pData) & 0xff];
nLength--;
pData++;
}
return ~fcs; // 取反
}
// 檢查給定長度數據的16位CRC是否正確。
bool IsCrc16Good(const byte* pData, int nLength)
{
u16 fcs = 0xffff; // 初始化
while(nLength>0)
{
fcs = (fcs >> 8) ^ crctab16[(fcs ^ *pData) & 0xff];
nLength--;
pData++;
}
return (fcs == 0xf0b8); // 0xf0b8是CRC-ITU的"Magic Value"
}
使用位元組型演算法,前面出現的PPP幀FCS計算和驗證過程,可用下面的程序片斷實現:
byte ppp[13] = {0xFF, 0x03, 0xC0, 0x21, 0x04, 0x03, 0x00, 0x07, 0x0D, 0x03, 0x06, 0x00, 0x00};
u16 result;
// 計算CRC
result = GetCrc16(ppp, 11);
// 填寫FCS,先低後高
ppp[11] = result & 0xff;
ppp[12] = (result >> 8) & 0xff;
// 驗證FCS
if(IsCrc16Good(ppp, 13))
{
... ...
}
該例中數據長度為11,說明CRC計算並不要求數據2位元組或4位元組對齊。
至於查找表的生成演算法,以及CRC-32等其它CRC的演算法,可參考RFC 1661, RFC 3309等文檔。需要注意的是,雖然CRC演算法的本質是一樣的,但不同的協議、標准所規定的初始化、移位次序、驗證方法等可能有所差別。
結語
CRC是現代通信領域的重要技術之一。掌握CRC的演算法與實現方法,在通信系統的設計、通信協議的分析以及軟體保護等諸多方面,能發揮很大的作用。如在作者曾經設計的一個多串口數據傳輸系統中,每串口速率為460kbps,不加校驗時誤碼率大於10-6,加上簡單的奇偶校驗後性能改善不很明顯,利用CRC進行檢錯重傳,誤碼率降低至10-15以下,滿足了實際應用的要求。
⑸ 在計算機網路中什麼是crc校驗和,怎麼計算
CRC即循環冗餘校驗碼
是數據通信領域中最常用的一種差錯校驗碼,其特徵是信息欄位和校驗欄位的長度可以任意選定。
循環冗餘校驗碼(CRC)的基本原理是:在K位信息碼後再拼接R位的校驗碼,整個編碼長度為N位,因此,這種編碼也叫(N,K)碼。對於一個給定的(N,K)碼,可以證明存在一個最高次冪為N-K=R的多項式G(x)。根據G(x)可以生成K位信息的校驗碼,而G(x)叫做這個CRC碼的生成多項式。 校驗碼的具體生成過程為:假設要發送的信息用多項式C(X)表示,將C(x)左移R位(可表示成C(x)*2R),這樣C(x)的右邊就會空出R位,這就是校驗碼的位置。用 C(x)*2R 除以生成多項式G(x)得到的余數就是校驗碼。
謝謝 希望能幫助到你
⑹ CRC校驗的生成方法
藉助於模2除法則,其餘數為校驗欄位。
例如:信息欄位代碼為: 1011001;對應m(x)=x6+x4+x3+1
假設生成多項式為:g(x)=x4+x3+1;則對應g(x)的代碼為: 11001
x4m(x)=x10+x8+x7+x4 對應的代碼記為:10110010000;
採用模2除法則: 得余數為: 1010 (即校驗欄位為:1010)
發送方:發出的傳輸欄位為: 1 0 1 1 0 0 1 1010
信息欄位 校驗欄位
接收方:使用相同的生成碼進行校驗:接收到的欄位/生成碼(二進制除法)
如果能夠除盡,則正確,
給出余數(1010)的計算步驟:
除法沒有數學上的含義,而是採用計算機的模二除法,即除數和被除數做異或運算。進行異或運算時除數和被除數最高位對齊,按位異或。
10110010000
^11001
--------------------------
01111010000
1111010000
^11001
-------------------------
0011110000
11110000
^11001
--------------------------
00111000
111000
^11001
-------------------
001010
則四位CRC校驗碼就為:1010。
利用CRC進行檢錯的過程可簡單描述為:在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的r位監督碼(CRC碼),附在原始信息後邊,構成一個新的二進制碼序列數共k+r位,然後發送出去。在接收端,根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。這個規則,在差錯控制理論中稱為「生成多項式」。
⑺ 計算機網路crc演算法。
發送的數據是原數據+余數
接受端收到數據後除以多項式,有餘數說明數據在傳輸的時候改變(如果數據改變了碰巧余數還為0,那隻能說明運氣太差了。。)
⑻ crc電路原理
CRC(Cyclic Rendancy Check)被廣泛用於數據通信過程中的差錯檢測,具有很強的
檢錯能力。本文詳細介紹了CRC的基本原理,並且按照解釋通行的查表演算法的由來的思路介紹
了各種具體的實現方法。
1.差錯檢測
數據通信中,接收端需要檢測在傳輸過程中是否發生差錯,常用的技術有奇偶校驗(Parity
Check),校驗和(Checksum)和CRC(Cyclic Rendancy Check)。它們都是發送端對消息按照
某種演算法計算出校驗碼,然後將校驗碼和消息一起發送到接收端。接收端對接收到的消息按
照相同演算法得出校驗碼,再與接收到的校驗碼比較,以判斷接收到消息是否正確。
奇偶校驗只需要1位校驗碼,其計算方法也很簡單。以奇檢驗為例,發送端只需要對所有消息
位進行異或運算,得出的值如果是0,則校驗碼為1,否則為0。接收端可以對消息進行相同計
算,然後比較校驗碼。也可以對消息連同校驗碼一起計算,若值是0則有差錯,否則校驗通過。
通常說奇偶校驗可以檢測出1位差錯,實際上它可以檢測出任何奇數位差錯。
校驗和的思想也很簡單,將傳輸的消息當成8位(或16/32位)整數的序列,將這些整數加起來
而得出校驗碼,該校驗碼也叫校驗和。校驗和被用在IP協議中,按照16位整數運算,而且其
MSB(Most Significant Bit)的進位被加到結果中。
顯然,奇偶校驗和校驗和都有明顯的不足。奇偶校驗不能檢測出偶數位差錯。對於校驗和,
如果整數序列中有兩個整數出錯,一個增加了一定的值,另一個減小了相同的值,這種差錯
就檢測不出來。
2.CRC演算法的基本原理
-------------------
CRC演算法的是以GF(2)(2元素伽羅瓦域)多項式算術為數學基礎的,聽起來很恐怖,但實際上它
的主要特點和運算規則是很好理解的。
GF(2)多項式中只有一個變數x,其系數也只有0和1,如:
1*x^7 + 0*x^6 + 1*x^5 + 0*x^4 + 0*x^3 + 1*x^2 +1*x^1 + 1*x^0
即:
x^7 + x^5 + x^2 + x + 1
(x^n表示x的n次冪)
GF(2)多項式中的加減用模2算術執行對應項上系數的加減,模2就是加減時不考慮進位和借位,
即:
0 + 0 = 0 0 - 0 = 0
0 + 1 = 1 0 - 1 = 1
1 + 0 = 1 1 - 0 = 1
1 + 1 = 0 1 - 1 = 0
顯然,加和減是一樣的效果(故在GF(2)多項式中一般不出現"-"號),都等同於異或運算。例
如P1 = x^3 + x^2 + 1,P2 = x^3 + x^1 + 1,P1 + P2為:
x^3 + x^2 + 1
+x^3 + x + 1
------------------------------
x^2 + x
GF(2)多項式乘法和一般多項式乘法基本一樣,只是在各項相加的時候按模2算術進行,例如
P1 * P2為:
(x^3 + x^2 + 1)(x^3 + x^1 + 1)
= (x^6 + x^4 + x^3
+ x^5 + x^3 + x^2
+ x^3 + x + 1)
= x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
GF(2)多項式除法也和一般多項式除法基本一樣,只是在各項相減的時候按模2算術進行,例
如P3 = x^7 + x^6 + x^5 + x^2 + x,P3 / P2為:
x^4 + x^3 + 1
--------------------------------------------------------------
x^3 + x + 1 )x^7 + x^6 + x^5 + x^2 + x
x^7 + x^5 + x^4
-----------------------------------
⑼ crc 計算機網路
2017年12月29日,星期五,
兄弟,我先給你簡單再捋一遍CRC編碼的概念和計算公式,原理明白了,以後不管碰到什麼樣的題,你都會迎刃而解了。
首先,需要知道如下幾個概念,
CRC編碼,就是你題目中所說的「待發字串」,它是經加工後帶有CRC校驗的待發送信息,
CRC校驗碼,就是你題目中所說的「CRC循環冗餘碼」,以下都簡稱為CRC校驗碼,它是通過CRC規則計算得來,
多項式,即真實信息,就是未經CRC編碼規則處理的原始的信息,就是你題目中說的「已知信息碼」,原始的真實信息有兩種表現形式,以本題為例,
a、原始信息的 二進制字串(形式):1000100101,
b、原始信息的 多項式(形式):X^9+X^5+X^2+1,
X^9+X^5+X^2+1多項式,就是由原始信息的二進制形式1000100101得來的,多項式中每一個因數都對應二進制形式 1000100101 中值為1的那一位,X^9 X^5 X^2就是2^9+2^5+2^2,那表示二進制數的權位,
1000100101
1*2^90*2^80*2^70*2^6 1*2^5 0*2^4 0*2^3 1*2^2 0*2^11*2^0
2^0=1...2^9=1 000 000 000,凡是二進制字串中值為1的權位都出現在了多項式中,例如,二進制字串最高位(左1)的1,就是2^9,所以它出現在了多項式中,形狀為X^9,而二進制數串中值為0的權位都沒有出現在多項式中,可以數一下,二進制數串中有4個1,所以對應的多項式中有4個因子:X^9、X^5、X^2、1,其中多項式的最後一個因子1,其實就是X^0,而我們都知道,任何數的0次冪都是1(0除外),可以看出,這兩種形式是等價的,即1000100101=X^9+X^5+X^2+1,當我們再遇到多項式時,就是去數原始信息(1000100101)中的1,然後把它的值為1的權位放到一起,寫成式子(X^9+X^5+X^2+1),兩者意義是一樣的,從二進制形式能推導出多項式,也可以從多項式推導出二進制形式,
生成多項式,就是你題目中提到的「G(x)=X^5+X^4+X^2+1」,生成多項式也可以寫成二進制形式,X^5+X^4+X^2+1其對應的二進制形式:110101,
通常,我們為了方便說明問題將生成多項式叫做:G(x),這里請注意,需要將
「生成多項式」和「多項式」進行區分,G(x)中的G就是generator polynomial,生成多項式的意思,
多項式:指的是原始信息1000100101中所有權位為1的權位寫在一起的形式X^9+X^5+X^2+1
生成多項式:是人為指定的多項式,由編碼人指定的東西,本例被人為指定成X^5+X^4+X^2+1即 110101 ,這個生成多項式是人為指定的,不是固定的,個人理解你指定成X^5+X^3+X^2+1也行,制定成X^5+X^4+X^3+X^2+1也行,
好了,接下來,我們要說最關鍵的CRC的定義和計算過程了,
CRC的定義:
多項式*2^(G(x)的最高次冪指數,你給的圖片題目中G(x)的最高次冪指數是5)/G(x)=CRC校驗碼;
用文字表達,就是原始數據信息乘以,2的 【生成多項式中最高冪指數】 次冪,乘2的多少次冪,就是在右邊加幾個0,比如乘以2^2,就是在右邊加2個零,因為是二進制數,所以乘幾個2就是加幾個零,和十進制數乘幾個10就是加幾個零道理一樣,然後再去除以生成多項式,請注意,這里的除,不是數學中的除法,而是指計算機中的模二除運算,實際上就是邏輯異或運算,說白了,就是將除數和被除數高位,進行左對齊後,相同為0,不同為1,然後一直除下去,直到得到最後的余數為止,這個余數就是我們需要的CRC校驗碼,而且這個最後得到的余數,取幾位由生成多項式中最高冪指數決定,最高冪指數是5就取5位,最高冪指數是6就取6位,最高冪指數是4就取4位,是根據生成多項式的最高次冪來定取幾位的.本例中,最高次冪是5,所以,最後的余數是5位二進制數,
X^5+X^4+X^2+1寫成二進制就是: 110101
你的圖片題目中,G(x)=X^5+X^4+X^2+1,也就是生成多項式是110101,
結合本題,我們來做一遍,原始數據:1000100101,生成多項式:110101,根據上面的規則有,
1000100101*2^5=1000100101 00000
把原始值右邊加上5個零:1000100101 00000之後,去除以生成多項式:110101
1000100101 00000
110101
----------------------------
0101110101 00000
左對齊,並開始按位異或,得0101110101 00000,
進行第二次除運算:
101110101 00000
110101
--------------------------
011011101 00000
左對齊,再按位異或,得到011011101 00000
開始第三次除運算:
11011101 00000
110101
--------------------
00001001 00000
左對齊,再按位異或,得到00001001 00000
進行第四次除運算:
100100000
110101
-----------------
010001000
左對齊,再異或,得到010001000
進行第五次除運算:
10001000
110101
------------
01011100
左對齊,再異或,得到01011100
進行第六次除運算:
1011100
110101
-------------
0110110
左對齊,再異或,得到0110110
進行第七次,最後一次除運算:
110110
110101
------------
000011
最終余數為000011,而由G(x)的最高次冪X^5的冪指數決定了,CRC校驗碼取5位,因此,最終得到的CRC校驗碼為:00011,
多項式*2^(G(x)的最高次冪指數,本例中G(x)的最高次冪指數是5)+G(x)=最終在物理線路上傳送的CRC編碼待發字串,
用文字表達就是,原始數據乘以,2的 【生成多項式中最高冪指數】 次冪,然後再加上生成多項式,最終得到要在線路中傳送的CRC編碼待發字串,
接著,以本例進行餘下的計算,原始數據:1000100101,CRC校驗碼(CRC循環冗餘碼)為:00011,
根據上面的定義,有:
1000100101*2^5=1000100101 00000,
1000100101 00000
+ 00011
----------------------
100010010100011
所以最終的「待發字串」CRC編碼為:100010010100011
⑽ 【計算機組成原理】如何計算CRC校驗位
在crc計算時只用8個數據位,起始位及停止位,如有奇偶校驗位也包括奇偶校驗位,都不參與crc計算。crc計算方法是:1、
載入一值為0xffff的16位寄存器,此寄存器為crc寄存器。2、
把第一個8位二進制數據(即通訊信息幀的第一個位元組)與16位的crc寄存器的相異或,異或的結果仍存放於該crc寄存器中。3、
把crc寄存器的內容右移一位,用0填補最高位,並檢測移出位是0還是1。4、
如果移出位為零,則重復第三步(再次右移一位);如果移出位為1,crc寄存器與0xa001進行異或。5、
重復步驟3和4,直到右移8次,這樣整個8位數據全部進行了處理。6、
重復步驟2和5,進行通訊信息幀下一個位元組的處理。7、
將該通訊信息幀所有位元組按上述步驟計算完成後,得到的16位crc寄存器的高、低位元組進行交換8、
最後得到的crc寄存器內容即為:crc校驗碼。