『壹』 如何實現文件分發:把文件批量分發到多台指定電腦中
人的眼睛就像生活中的一個小鏡頭
『貳』 怎樣使兩台電腦實現共同上網(寬頻的)
買1個路由器
路由器
解釋路由器的概念,首先得知道什麼是路由。所謂「路由」,是指把數據從一個地方傳送到另一個地方的行為和動作,而路由器,正是執行這種行為動作的機器,它的英文名稱為Router,是一種連接多個網路或網段的網路設備,它能將不同網路或網段之間的數據信息進行「翻譯」,以使它們能夠相互「讀懂」對方的數據,從而構成一個更大的網路。
簡單的講,路由器主要有以下幾種功能:
第一,網路互連,路由器支持各種區域網和廣域網介面,主要用於互連區域網和廣域網,實現不同網路互相通信;
第二,數據處理,提供包括分組過濾、分組轉發、優先順序、復用、加密、壓縮和防火牆等功能;
第三,網路管理,路由器提供包括配置管理、性能管理、容錯管理和流量控制等功能。
為了完成「路由」的工作,在路由器中保存著各種傳輸路徑的相關數據--路由表(Routing Table),供路由選擇時使用。路由表中保存著子網的標志信息、網上路由器的個數和下一個路由器的名字等內容。路由表可以是由系統管理員固定設置好的,也可以由系統動態修改,可以由路由器自動調整,也可以由主機控制。在路由器中涉及到兩個有關地址的名字概念,那就是:靜態路由表和動態路由表。由系統管理員事先設置好固定的路由表稱之為靜態(static)路由表,一般是在系統安裝時就根據網路的配置情況預先設定的,它不會隨未來網路結構的改變而改變。動態(Dynamic)路由表是路由器根據網路系統的運行情況而自動調整的路由表。路由器根據路由選擇協議(Routing Protocol)提供的功能,自動學習和記憶網路運行情況,在需要時自動計算數據傳輸的最佳路徑。
為了簡單地說明路由器的工作原理,現在我們假設有這樣一個簡單的網路。如圖所示,A、B、C、D四個網路通過路由器連接在一起。
現在我們來看一下在如圖所示網路環境下路由器又是如何發揮其路由、數據轉發作用的。現假設網路A中一個用戶A1要向C網路中的C3用戶發送一個請求信號時,信號傳遞的步驟如下:
第1步:用戶A1將目的用戶C3的地址C3,連同數據信息以數據幀的形式通過集線器或交換機以廣播的形式發送給同一網路中的所有節點,當路由器A5埠偵聽到這個地址後,分析得知所發目的節點不是本網段的,需要路由轉發,就把數據幀接收下來。
第2步:路由器A5埠接收到用戶A1的數據幀後,先從報頭中取出目的用戶C3的IP地址,並根據路由表計算出發往用戶C3的最佳路徑。因為從分析得知到C3的網路ID號與路由器的C5網路ID號相同,所以由路由器的A5埠直接發向路由器的C5埠應是信號傳遞的最佳途經。
第3步:路由器的C5埠再次取出目的用戶C3的IP地址,找出C3的IP地址中的主機ID號,如果在網路中有交換機則可先發給交換機,由交換機根據MAC地址表找出具體的網路節點位置;如果沒有交換機設備則根據其IP地址中的主機ID直接把數據幀發送給用戶C3,這樣一個完整的數據通信轉發過程也完成了。
從上面可以看出,不管網路有多麼復雜,路由器其實所作的工作就是這么幾步,所以整個路由器的工作原理基本都差不多。當然在實際的網路中還遠比上圖所示的要復雜許多,實際的步驟也不會像上述那麼簡單,但總的過程是這樣的。
增加路由器涉及的基本協議
路由器英文名稱為Router,是一種用於連接多個網路或網段的網路設備。這些網路可以是幾個使用不同協議和體系結構的網路(比如互聯網與區域網),可以是幾個不同網段的網路(比如大型互聯網中不同部門的網路),當數據信息從一個部門網路傳輸到另外一個部門網路時,可以用路由器完成。現在,家庭區域網也越來越多地採用路由器寬頻共享的方式上網。
路由器在連接不同網路或網段時,可以對這些網路之間的數據信息進行「翻譯」,然後「翻譯」成雙方都能「讀」懂的數據,這樣就可以實現不同網路或網段間的互聯互通。同時,它還具有判斷網路地址和選擇路徑的功能以及過濾和分隔網路信息流的功能。目前,路由器已成為各種骨幹網路內部之間、骨幹網之間以及骨幹網和互聯網之間連接的樞紐。
NAT:全稱Network Address Translation(網路地址轉換),路由器通過NAT功能可以將區域網內部的IP地址轉換為合法的IP地址並進行Internet的訪問。比如,區域網內部有個IP地址為192.168.0.1的計算機,當然通過該IP地址可以和內網其他的計算機通信;但是如果該計算機要訪問外部Internet網路,那麼就需要通過NAT功能將192.168.0.1轉換為合法的廣域網IP地址,比如210.113.25.100。
DHCP:全稱Dynamic Host Configuration Protocol(動態主機配置協議),通過DHCP功能,路由器可以為網路內的主機動態指定IP地址,而不需要每個用戶去設置靜態IP地址,並將TCP/IP配置參數分發給區域網內合法的網路客戶端。
DDNS:全稱Dynamic Domain Name Server(動態域名解析系統),通常稱為「動態DNS」,因為對於普通的寬頻上網使用的都是ISP(網路服務商)提供的動態IP地址。如果在區域網內建立了某個伺服器需要Internet用戶進行訪問,那麼,可以通過路由器的DDNS功能將動態IP地址解析為一個固定的域名,比如www.cpcw.com,這樣Internet用戶就可以通過該固定域名對內網伺服器進行訪問。
PPPoE:全稱PPP over Ethernet(乙太網上的點對點協議),通過PPPoE技術,可以讓寬頻數據機(比如ADSL Modem)用戶獲得寬頻網的個人身份驗證訪問,能為每個用戶創建虛擬撥號連接,這樣就可以高速連接到Internet。路由器具備該功能,可以實現PPPoE的自動撥號連接,這樣與路由器連接的用戶可以自動連接到Internet。
ICMP:全稱Internet Control Message Protocol(Internet控制消息協議),該協議是TCP/IP協議集中的一個子協議,主要用於在主機與路由器之間傳遞控制信息,包括報告錯誤、交換受限控制和狀態信息等。
『叄』 電腦怎樣通過互聯網傳輸數據
網路中數據傳輸過程
我們每天都在使用互聯網,我們電腦上的數據是怎麼樣通過互聯網傳輸到到另外的一台電腦上的呢?
我們知道現在的互聯網中使用的TCP/IP協議是基於,OSI(開放系統互聯)的七層參考模型的,(雖然不是完全符合)從上到下分別為 應用層 表示層 會話層 傳輸層 網路層 數據鏈路層和物理層。其中數據鏈路層又可是分為兩個子層分別為邏輯鏈路控制層(Logic Link Control,LLC )和介質訪問控制層((Media Access Control,MAC )也就是平常說的MAC層。LLC對兩個節點中的鏈路進行初始化,防止連接中斷,保持可靠的通信。MAC層用來檢驗包含在每個楨中的地址信息。在下面會分析到。還要明白一點路由器是在網路層的,而網卡在數據鏈路層。
我們知道,ARP(Address Resolution Protocol,地址轉換協議)被當作底層協議,用於IP地址到物理地址的轉換。在乙太網中,所有對IP的訪問最終都轉化為對網卡MAC地址的訪問。如果主機A的ARP列表中,到主機B的IP地址與MAC地址對應不正確,由A發往B數據包就會發向錯誤的MAC地址,當然無法順利到達B,結 果是A與B根本不能進行通信。
首先我們分析一下在同一個網段的情況。假設有兩台電腦分別命名為A和B,A需要相B發送數據的話,A主機首先把目標設備B的IP地址與自己的子網掩碼進行「與」操作,以判斷目標設備與自己是否位於同一網段內。如果目標設備在同一網段內,並且A沒有獲得與目標設備B的IP地址相對應的MAC地址信息,則源設備(A)以第二層廣播的形式(目標MAC地址為全1)發送ARP請求報文,在ARP請求報文中包含了源設備(A)與目標設備(B)的IP地址。同一網段中的所有其他設備都可以收到並分析這個ARP請求報文,如果某設備發現報文中的目標IP地址與自己的IP地址相同,則它向源設備發回ARP響應報文,通過該報文使源設備獲得目標設備的MAC地址信息。為了減少廣播量,網路設備通過ARP表在緩存中保存IP與MAC地址的映射信息。在一次 ARP的請求與響應過程中,通信雙方都把對方的MAC地址與IP地址的對應關系保存在各自的ARP表中,以在後續的通信中使用。ARP表使用老化機制,刪除在一段時間內沒有使用過的IP與MAC地址的映射關系。一個最基本的網路拓撲結構:
PC-A並不需要獲取遠程主機(PC-C)的MAC地址,而是把IP分組發向預設網關,由網關IP分組的完成轉發過程。如果源主機(PC-A)沒有預設網關MAC地址的緩存記錄,則它會通過ARP協議獲取網關的MAC地址,因此在A的ARP表中只觀察到網關的MAC地址記錄,而觀察不到遠程主機的 MAC地址。在乙太網(Ethernet)中,一個網路設備要和另一個網路設備進行直接通信,
除了知道目標設備的網路層邏輯地址(如IP地址)外,還要知道目標設備的第二層物理地址(MAC地址)。ARP協議的基本功能就是通過目標設備的IP地址,查詢目標設備的MAC地址,以保證通信的順利進行。 數據包在網路中的發送是一個及其復雜的過程,上圖只是一種很簡單的情況,中間沒有過多的中間節點,其實現實中只會比這個更復雜,但是大致的原理是一致的。
(1)PC-A要發送數據包到PC-C的話,如果PC-A沒有PC-C的IP地址,則PC-A首先要發出一個dns的請求,路由器A或者dns解析伺服器會給PC-A回應PC-C的ip地址,這樣PC-A關於數據包第三層的IP地址信息就全了:源IP地址:PC-A,目的ip地址:PC-C。
(2)接下來PC-A要知道如何到達PC-C,然後,PC-A會發送一個arp的地址解析請求,發送這個地址解析請求,不是為了獲得目標主機PC-C的MAC地址,而是把請求發送到了路由器A中,然後路由器A中的MAC地址會發送給源主機PC-A,這樣PC-A的數據包的第二層信息也全了,源MAC地址:PC-A的MAC地址,目的MAC地址:路由器A的MAC地址,
(3)然後數據會到達交換機A,交換機A看到數據包的第二層目的MAC地址,是去往路由器A的,就把數據包發送到路由器A,路由器A收到數據包,首先查看數據包的第三層ip目的地址,如果在自己的路由表中有去往PC-C的路由,說明這是一個可路由的數據包。 (4)然後路由器進行IP重組和分組的過程。首先更換此數據包的第二層包頭信息,路由器PC-A到達PC—C要經過一個廣域網,在這里會封裝很多廣域網相關的協議。其作用也是為了找下一階段的信息。同時對第二層和第三層的數據包重校驗。把數據經過Internet發送出去。最後經過很多的節點發送到目標主機PC_C中。
現在我們想一個問題,PC-A和PC-C的MAC地址如果是相同的話,會不會影響正常的通訊呢!答案是不會影響的,因為這兩個主機所處的區域網被廣域網分隔開了,通過對發包過程的分析可以看出來,不會有任何的問題。而如果在同一個區域網中的話,那麼就會產生通訊的混亂。當數據發送到交換機是,這是的埠信息會有兩個相同的MAC地址,而這時數據會發送到兩個主機上,這樣信息就會混亂。因此這也是保證MAC地址唯一性的一個理由。
我暫且按我的理解說說吧。
先看一下計算機網路OSI模型的七個層次:
┌—————┐
│ 應用層 │←第七層
├—————┤
│ 表示層 │
├—————┤
│ 會話層 │
├—————┤
│ 傳輸層 │
├—————┤
│ 網路層 │
├—————┤
│數據鏈路層│
├—————┤
│ 物理層 │←第一層
└—————┘
而我們現在用的網路通信協議TCP/IP協議者只劃分了四成:
┌—————┐
│ 應用層 │ ←包括OSI的上三層
├—————┤
│ 傳輸層 │
├—————┤
│ 網路層 │
├—————┤
│網路介面層 │←包括OSI模型的下兩層,也就是各種不同區域網。
└—————┘
兩台計算機通信所必須需要的東西:IP地址(網路層)+埠號(傳送層)。
兩台計算機通信(TCP/IP協議)的最精簡模型大致如下:
主機A---->路由器(零個或多個)---->主機B
舉個例子:主機A上的應用程序a想要和主機B上面的應用程序b通信,大致如下
程序a將要通信的數據發到傳送層,在傳送層上加上與該應用程序對應的通信埠號(主機A上不同的應用程序有不同的埠號),如果是用的TCP的話就加上TCP頭部,UDP就加上UDP頭部。
在傳送成加上頭部之後繼續嚮往下傳到網路層,然後加上IP頭部(標識主機地址以及一些其他的數據,這里就不詳細說了)。
然後傳給下層到數據鏈路層封裝成幀,最後到物理層變成二進制數據經過編碼之後向外傳輸。
在這個過程中可能會經過許多各種各樣的區域網,舉個例子:
主機A--->(區域網1--->路由器--->區域網2)--->主機B
這個模型比上面一個稍微詳細點,其中括弧裡面的可以沒有也可能有一個或多個,這個取決於你和誰通信,也就是主機B的位置。
主機A的數據已經到了具體的物理介質了,然後經過區域網1到了路由器,路由器接受主機A來的數據先經過解碼,還原成數據幀,然後變成網路層數據,這個過程也就是主機A的數據經過網路層、數據鏈路層、物理層在路由器上面的一個反過程。
然後路由器分析主機A來的數據的IP頭部(也就是在主機A的網路層加上的數據),並且修改頭部中的一些內容之後繼續把數據傳送出去。
一直到主機B收到數據為止,主機B就按照主機A處理數據的反過程處理數據,直到把數據交付給主機B的應用程序b。完成主機A到主機B的單方向通信。
這里的主機A、B只是為了書寫方便而已,可能通信的雙方不一定就是個人PC,伺服器與主機,主機與主機,伺服器與伺服器之間的通信大致都是這樣的。
再舉個例子,我們開網頁上網路:
就是我們的主機瀏覽器的這個應用程序和網路的伺服器之間的通信。應用成所用的協議就是HTTP,而伺服器的埠號就是熟知埠號80.
大致過程就是上面所說,其中的細節很復雜,任何一個細節都可以寫成一本書,對於非專業人員也沒有必要深究。
『肆』 有一台設備網路發送數據到一台電腦軟體如何操作
常規方法: 1、在原電腦上登錄久其軟體:主界面--傳出--...--傳出每個任務的數據包; 2、將傳出的數據包拷貝到新的電腦上; 3、在新電腦上登錄久其軟體:主界面--導入--...--導入拷貝的數據包即可。快捷方法: 1、在原電腦上登錄久其軟體:高級--系統選項--缺失任務路徑; 2、找到缺失任務路徑,拷貝路徑下所需TSK文件夾到新電腦的缺失任務路徑; 3、在新電腦上登錄久其軟體:任務--任務--任務管理--搜索,將搜索的任務加入任務即可。
『伍』 路由器如何將流量從一個網路轉發到另一個網路
這個涉及到路由器工作原理
參考如下:
所謂路由就是指通過相互連接的網路把信息從源地點移動到目標地點的活動。一般來說,在路由過程中,信息至少會經過一個或多個中間節點。通常,人們會把路由和交換進行對比,這主要是因為在普通用戶看來兩者所實現的功能是完全一樣的。其實,路由和交換之間的主要區別就是交換發生在OSI參考模型的第二層(數據鏈路層),而路由發生在第三層,即網路層。這一區別決定了路由和交換在移動信息的過程中需要使用不同的控制信息,所以兩者實現各自功能的方式是不同的。 早在40多年前間就已經出現了對路由技術的討論,但是直到80年代路由技術才逐漸進入商業化的應用。路由技術之所以在問世之初沒有被廣泛使用主要是因為80年代之前的網路結構都非常簡單,路由技術沒有用武之地。直到最近十幾年,大規模的互聯網路才逐漸流行起來,為路由技術的發展提供了良好的基礎和平台。 路由器是互聯網的主要節點設備。路由器通過路由決定數據的轉發。轉發策略稱為路由選擇(routing),這也是路由器名稱的由來(router,轉發者)。作為不同網路之間互相連接的樞紐,路由器系統構成了基於 TCP/IP 的國際互聯網路 Internet 的主體脈絡,也可以說,路由器構成了 Internet 的骨架。它的處理速度是網路通信的主要瓶頸之一,它的可靠性則直接影響著網路互連的質量。因此,在園區網、地區網、乃至整個 Internet 研究領域中,路由器技術始終處於核心地位,其發展歷程和方向,成為整個 Internet 研究的一個縮影。在當前我國網路基礎建設和信息建設方興未艾之際,探討路由器在互連網路中的作用、地位及其發展方向,對於國內的網路技術研究、網路建設,以及明確網路市場上對於路由器和網路互連的各種似是而非的概念,都有重要的意義。
[編輯本段]原理
路由器(Router)是用於連接多個邏輯上分開的網路,所謂邏輯網路是代表一個單獨的網路或者一個子網。當數據從一個子網傳輸到另一個子網時,可通過路由器來完成。因此,路由器具有判斷網路地址和選擇路徑的功能,它能在多網路互聯環境中,建立靈活的連接,可用完全不同的數據分組和介質訪問方法連接各種子網,路由器只接受源 站或其他路由器的信息,屬網路層的一種互聯設備。它不關心各子網使用的硬體設備,但要求運行與網路層協議相一致的軟體。路由器分本地路由器和遠程路由器,本地路由器是用來連接網路傳輸介質的,如光纖、同軸電纜、雙絞線;遠程路由器是用來連接遠程傳輸介質,並要求相應的設備,如電話線要配數據機,無線要通過無線接收機、發射機。路由器原理其工作原理如下: (1)工作站A將工作站B的地址12.0.0.5連同數據信息以數據幀的形式發送給路由器1。 (2)路由器1收到工作站A的數據幀後,先從包頭中取出地址12.0.0.5,並根據路徑表計算出發往工作站B的最佳路徑:R1->R2->R5->B;並將數據幀發往路由器2。 (3)路由器2重復路由器1的工作,並將數據幀轉發給路由器5。 (4)路由器5同樣取出目的地址,發現12.0.0.5就在該路由器所連接的網段上,於是將該數據幀直接交給工作站B。 (5)工作站B收到工作站A的數據幀,一次通信過程宣告結束。 事實上,路由器除了上述的路由選擇這一主要功能外,還具有網路流量控制功能。有的路由器僅支持單一協議,但大部分路由器可以支持多種協議的傳輸,即多協議路由器。由於每一種協議都有自己的規則,要在一個路由器中完成多種協議的演算法,勢必會 降低路由器的性能。因此,我們以為,支持多協議的路由器性能相對較低。用戶購買路由器時,需要根據自己的實際情況,選擇自己需要的網路協議的路由器。 近年來出現了交換路由器產品,從本質上來說它不是什麼新技術,而是為了提高通信能力,把交換機的原理組合到路由器中,使數據傳輸能力更快、更好。
[編輯本段]作用
路由器的一個作用是連通不同的網路,另一個作用是選擇信息傳送的線路。選擇通暢快捷的近路,能大大提高通信速度,減輕網路系統通信負荷,節約網路系統資源,提高網路系統暢通率,從而讓網路系統發揮出更大的效益來。 從過濾網路流量的角度來看,路由器的作用與交換機和網橋非常相似。但是與工作在網路物理層,從物理上劃分網段的交換機不同,路由器使用專門的軟體協議從邏輯上對整個網路進行劃分。例如,一台支持IP協議的路由器可以把網路劃分成多個子網段,只有指向特殊IP地址的網路流量才可以通過路由器。對於每一個接收到的數據包,路由器都會重新計算其校驗值,並寫入新的物理地址。因此,使用路由器轉發和過濾數據的速度往往要比只查看數據包物理地址的交換機慢。但是,路由器對於那些結構復雜的網路,使用路由器可以提高網路的整體效率。路由器的另外一個明顯優勢就是可以自動過濾網路廣播。從總體上說,在網路中添加路由器的整個安裝過程要比即插即用的交換機復雜很多。 一般說來,異種網路互聯與多個子網互聯都應採用路由器來完成。 路由器的主要工作就是為經過路由器的每個數據幀尋找一條最佳傳輸路徑,並將該數據有效地傳送到目的站點。由此可見,選擇最佳路徑的策略即路由演算法是路由器的關鍵所在。為了完成這項工作,在路由器中保存著各種傳輸路徑的相關數據--路徑表(Routing Table),供路由選擇時使用。路徑表中保存著子網的標志信息、網上路由器的個數和下一個路由器的名字等內容。路徑表可以是由系統管理員固定設置好的,也可以由系統動態修改,可以由路由器自動調整,也可以由主機控制。 1.靜態路徑表 由系統管理員事先設置好固定的路徑表稱之為靜態(static)路徑表,一般是在系統安裝時就根據網路的配置情況預先設定的,它不會隨未來網路結構的改變而改變。 2.動態路徑表 動態(Dynamic)路徑表是路由器根據網路系統的運行情況而自動調整的路徑表。路由器根據路由選擇協議(Routing Protocol)提供的功能,自動學習和記憶網路運行情況,在需要時自動計算數據傳輸的最佳路徑。
[編輯本段]使用級別分類
互聯網各種級別的網路中隨處都可見到路由器。接入網路使得家庭和小型企業可以連接到某個互聯網服務提供商;企業網中的路由器連接一個校園或企業內成千上萬的計算機;骨幹網上的路由器終端系統通常是不能直接訪問的,它們連接長距離骨幹網上的ISP和企業網路。互聯網的快速發展無論是對骨幹網、企業網還是接入網都帶來了不同的挑戰。骨幹網要求路由器能對少數鏈路進行高速路由轉發。企業級路由器不但要求埠數目多、價格低廉,而且要求配置起來簡單方便,並提供QoS。
1.接入路由器
接入路由器連接家庭或ISP內的小型企業客戶。接入路由器已經開始不只是提供SLIP或PPP連接,還支持諸如PPTP和IPSec等虛擬私有網路協議。這些協議要能在每個埠上運行。諸如ADSL等技術將很快提高各家庭的可用帶寬,這將進一步增加接入路由器的負擔。由於這些趨勢,接入路由器將來會支持許多異構和高速埠,並在各個埠能夠運行多種協議,同時還要避開電話交換網。
2.企業級路由器
企業或校園級路由器連接許多終端系統,其主要目標是以盡量便宜的方法實現盡可能多的端點互連,並且進一步要求支持不同的服務質量。許多現有的企業網路都是由Hub或網橋連接起來的乙太網段。盡管這些設備價格便宜、易於安裝、無需配置,但是它們不支持服務等級。相反,有路由器參與的網路能夠將機器分成多個碰撞域,並因此能夠控制一個網路的大小。此外,路由器還支持一定的服務等級,至少允許分成多個優先順序別。但是路由器的每埠造價要貴些,並且在能夠路由器使用之前要進行大量的配置工作。因此,企業路由器的成敗就在於是否提供大量埠且每埠的造價很低,是否容易配置,是否支持QoS。另外還要求企業級路由器有效地支持廣播和組播。企業網路還要處理歷史遺留的各種LAN技術,支持多種協議,包括IP、IPX和Vine。它們還要支持防火牆、包過濾以及大量的管理和安全策略以及VLAN。
3.骨幹級路由器
骨幹級路由器實現企業級網路的互聯。對它的要求是速度和可靠性,而代價則處於次要地位。硬體可靠性可以採用電話交換網中使用的技術,如熱備份、雙電源、雙數據通路等來獲得。這些技術對所有骨幹路由器而言差不多是標準的。骨幹IP路由器的主要性能瓶頸是在轉發表中查找某個路由所耗的時間。當收到一個包時,輸入埠在轉發表中查找該包的目的地址以確定其目的埠,當包越短或者當包要發往許多目的埠時,勢必增加路由查找的代價。因此,將一些常訪問的目的埠放到緩存中能夠提高路由查找的效率。不管是輸入緩沖還是輸出緩沖路由器,都存在路由查找的瓶頸問題。除了性能瓶頸問題,路由器的穩定性也是一個常被忽視的問題。
4.太比特路由器
在未來核心互聯網使用的三種主要技術中,光纖和DWDM都已經是很成熟的並且是現成的。如果沒有與現有的光纖技術和DWDM技術提供的原始帶寬對應的路由器,新的網路基礎設施將無法從根本上得到性能的改善,因此開發高性能的骨幹交換/路由器(太比特路由器)已經成為一項迫切的要求。太比特路由器技術現在還主要處於開發實驗階段。
5. 多WAN路由器
早在2000年,北京欣全向工程師在研究一種多鏈路(Multi-Homing)解決方案時發現,全部乙太網協議的多WAN口設備在中國存在巨大的市場需求。伴隨著欣全向產品研發成功,全國第一台雙WAN路由器誕生於公元2002年,中國第一款雙WAN寬頻路由器被命名為NuR8021。 雙WAN路由器具有物理上的2個WAN口作為外網接入,這樣內網電腦就可以經過雙WAN路由器的負載均衡功能同時使用2條外網接入線路,大幅提高了網路帶寬。當前雙WAN路由器主要有「帶寬匯聚」和「一網雙線」的應用優勢,這是傳統單WAN路由器做不到的。
[編輯本段]功能級別分類
寬頻路由器
寬頻路由器是近幾年來新興的一種網路產品,它伴隨著寬頻的普及應運而生。寬頻路由器在一個緊湊的箱子中集成了路由器、防火牆、帶寬控制和管理等功能,具備快速轉發能力,靈活的網路管理和豐富的網路狀態等特點。多數寬頻路由器針對中國寬頻應用優化設計,可滿足不同的網路流量環境,具備滿足良好的電網適應性和網路兼容性。多數寬頻路由器採用高度集成設計,集成10/100Mbps寬頻乙太網WAN介面、並內置多口10/100Mbps自適應交換機,方便多台機器連接內部網路與Internet,可以廣泛應用於家庭、學校、辦公室、網吧、小區接入、政府、企業等場合。
模塊化路由器
模塊化路由器主要是指該路由器的介面類型及部分擴展功能是可以根據用戶的實際需求來配置的路由器,這些路由器在出廠時一般只提供最基本的路由功能,用戶可以根據路由器所要連接的網路類型來選擇相應的模塊,不同的模塊可以提供不同的連接和管理功能。例如,絕大多數模塊化路由器可以允許用戶選擇網路介面類型,有些模塊化路由器可以提供VPN等功能模塊,有些模塊化路由器還提供防火牆的功能,等等。目前的多數路由器都是模塊化路由器。
非模塊化路由器
『陸』 網路中發送到路由器的數據,路由器怎麼知道這數據是要發送給區域網的哪個電腦呢
你說的是外網發到區域網里的數據包吧,如果區域網里使用的是私有地址(10或172.16-172.32或192.168開頭,私有地址的數據包在關於網中是不會被傳遞的),那麼在路由器上一定開啟了NAT功能,將區域網內的私有地址與一個或多個公有地址進行關聯轉換,發出去的包會以路由器上轉換過的共有IP地址作為源發出,收到回來的包時,根據這個包的目的IP可以查到與私有地址的對應關系,這樣就完成了數據的轉發
『柒』 PC到PC之間怎麼傳送數據包包括一個路由器,一個交換機,2台PC,由PCA發送經過交換機,路由器到PC2
三層網路中,你看拓撲完全可以吧交換機當透明的。接下來給你演示下報文在三層網路傳輸的過程
PC1----------(e0口)R1(e1口)----------PC2
先配上地址吧;PC1 10.1.1.1/30 PC2 172.16.1.1/30
1、pc1跟pc2不在同一網段,所一通過pc1自身路由表的判斷要把數據送到網關R1e0上
2、pc1發ARP廣播請求R1e0的的mac(源macpc1 目標macR1e0)
3、R1收到這個ARP廣播,看到是請求自己的mac源是PC1,所以回個單播告訴PC1自己e0的mac
4、pc1收到單播後知道怎麼走了,開始封裝發送 | 目標macR1e0 | 源IP10.1.1.1/30 | 目標IP172.16.1.1/30 | | |,二層幀前幾個頭大概就這樣具體這里就不講了,
5、R1收到這個報文,解封到2層,看到mac是自己收下來了(不是的話路由器就直接丟了,然後回個ICMP),R1是路由做轉發用的,所以這時再看IP欄位,發現是去往172.16.1.1/30的
6、R1知道去往172.16.1.1/30後,產看路由表,發現172.16.1.1/30是自己直連並且ARP有對應的MAC映射,R1開始封裝發送,這時R1把2層頭(報文格式內容比較多,這你就當成MAC)換成PC2的 | 目標MACpc2 | 源ip 10.1.1.1/30 | 目標IP172.16.1.1/30|、、、、
7 PC2收到,
報文在2 3層設備間傳送,可以說是一個換2層幀頭的過程,源ip目標ip都不會變的,而這過程中目標MAC一般都為下一跳設備的mac,列如:pc2和R1中間在加台R2 ,那麼R1把包發出送目標MAC就變為R2了,但源ip和目標IP是始終不變的,
說的有點粗啦。。。呵呵,沒有圖和模擬實驗的,只能粗粗的這樣將了
『捌』 區域網多台電腦發送大量UDP數據包給本地網路,應如何防範
你看該計算機是否正常,如果沒有中病毒,那麼可以不用管它。網路內部會自動發一下UDP數據,但19540埠似乎有點問題。你可以配置你的放火牆不報警該規則,但是丟棄或攔擊該數據包就可以了。