1. 對稱密碼體制根據對明文加密方式的不同分為分組密碼和序列密碼
最熱門的話題是INTERNET與非同步傳輸模式ATM技術。信息技術與網路的應用已經成為衡量21世界國力與企業競爭力的重要標准。國家信息基礎設施建設計劃,NII被稱為信息高速公路。Internet,Intranet與Extranet和電子商務已經成為企業網研究與應用的熱點。計算機網路建立的主要目標是實現計算機資源的共享。計算機資源主要是計算機硬體,軟體與數據。我們判斷計算機是或互連成計算機網路,主要是看它們是不是獨立的「自治計算機」。分布式操作系統是以全局方式管理系統資源,它能自動為用戶任務調度網路資源。分布式系統與計算機網路的主要是區別不在他們的物理結構,而是在高層軟體上。按傳輸技術分為:1。廣播式網路。2。點--點式網路。採用分組存儲轉發與路由選擇是點-點式網路與廣播網路的重要區別之一。按規模分類:區域網,城域網與廣域網。廣域網(遠程網)以下特點:1適應大容量與突發性通信的要求。2適應綜合業務服務的要求。3開放的設備介面與規范化的協議。4完善的通信服務與網路管理。X.25網是一種典型的公用分組交換網,也是早期廣域網中廣泛使用的一種通信子網。變化主要是以下3個方面:1傳輸介質由原來的電纜走向光纖。2多個區域網之間告訴互連的要求越來越強烈。3用戶設備大大提高。在數據傳輸率高,誤碼率低的光纖上,使用簡單的協議,以減少網路的延遲,而必要的差錯控制功能將由用戶設備來完成。這就是幀中續FR,FrameRelay技術產生的背景。決定區域網特性的主要技術要素為網路拓撲,傳輸介質與介質訪問控制方法。從區域網介質控制方法的角度,區域網分為共享式區域網與交換式區域網。城域網MAN介於廣域網與區域網之間的一種高速網路。FDDI是一種以光纖作為傳輸介質的高速主幹網,它可以用來互連區域網與計算機。各種城域網建設方案有幾個相同點:傳輸介質採用光纖,交換接點採用基於IP交換的高速路由交換機或ATM交換機,在體系結構上採用核心交換層,業務匯聚層與接入層三層模式。計算機網路的拓撲主要是通信子網的拓撲構型。網路拓撲可以根據通信子網中通信信道類型分為:4點-點線路通信子網的拓撲。星型,環型,樹型,網狀型。5廣播式通信子網的拓撲。匯流排型,樹型,環型,無線通信與衛星通信型。傳輸介質是網路中連接收發雙方的物理通路,也是通信中實際傳送信息的載體。常用的傳輸介質為:雙絞線,同軸電纜,光纖電纜和無線通信與衛星通信信道。雙絞線由按規則螺旋結構排列的兩根,四根或八根絕緣導線組成。屏蔽雙絞線STP和非屏蔽雙絞線UTP。屏蔽雙絞線由外部保護層,屏蔽層與多對雙絞線組成。非屏蔽雙絞線由外部保護層,多對雙絞線組成。三類線,四類線,五類線。雙絞線用做遠程中續線,最大距離可達15公里;用於100Mbps區域網時,與集線器最大距離為100米。同軸電纜由內導體,外屏蔽層,絕緣層,外部保護層。分為:基帶同軸電纜和寬頻同軸電纜。單信道寬頻:寬頻同軸電纜也可以只用於一條通信信道的高速數字通信。光纖電纜簡稱為光纜。由光纖芯,光層與外部保護層組成。在光纖發射端,主要是採用兩種光源:發光二極體LED與注入型激光二極體ILD。光纖傳輸分為單模和多模。區別在與光釺軸成的角度是或分單與多光線傳播。單模光纖優與多模光纖。電磁波的傳播有兩種方式:1。是在空間自由傳播,既通過無線方式。2。在有限的空間,既有線方式傳播。移動通信:移動與固定,移動與移動物體之間的通信。移動通信手段:1無線通信系統。2微波通信系統。頻率在100MHz-10GHz的信號叫做微波信號,它們對應的信號波長為3m-3cm。3蜂窩移動通信系統。多址接入方法主要是有:頻分多址接入FDMA,時分多址接入TDMA與碼分多址接入CDMA。4衛星移動通信系統。商用通信衛星一般是被發射在赤道上方35900km的同步軌道上描述數據通信的基本技術參數有兩個:數據傳輸率與誤碼率。數據傳輸率是描述數據傳輸系統的重要指標之一。S=1/T。對於二進制信號的最大數據傳輸率Rmax與通信信道帶寬B(B=f,單位是Hz)的關系可以寫為:Rmax=2*f(bps)在有隨機熱雜訊的信道上傳輸數據信號時,數據傳輸率Rmax與信道帶寬B,信噪比S/N關系為:Rmax=B*LOG⒉(1+S/N)誤碼率是二進制碼元在數據傳輸系統中被傳錯的概率,它在數值上近似等於:Pe=Ne/N(傳錯的除以總的)對於實際數據傳輸系統,如果傳輸的不是二進制碼元,要摺合為二進制碼元來計算。這些為網路數據傳遞交換而指定的規則,約定與標准被稱為網路協議。協議分為三部分:語法。語義。時序。將計算機網路層次模型和各層協議的集合定義為計算機網路體系結構。計算機網路中採用層次結構,可以有以下好處:1各層之間相互獨立。2靈活性好。3各層都可以採用最合適的技術來實現,各層實現技術的改變不影響其他各層。4易於實現和維護。5有利於促進標准化。該體系結構標準定義了網路互連的七層框架,既ISO開放系統互連參考模型。在這一框架中進一步詳細規定了每一層的功能,以實現開放系統環境中的互連性,互操作性與應用的可移植性。OSI標准制定過程中採用的方法是將整個龐大而復雜的問題劃分為若干個容易處理的小問題,這就是分層的體系結構法。在OSI中,採用了三級抽象,既體系結構,服務定義,協議規格說明。OSI七層:2物理層:主要是利用物理傳輸介質為數據鏈路層提供物理連接,以便透明的傳遞比特流。3數據鏈路層。在通信實體之間建立數據鏈路連接,傳送以幀為單位的數據,採用差錯控制,流量控制方法。4網路層:通過路由演算法,為分組通過通信子網選擇最適當的路徑。5傳輸層:是向用戶提供可靠的端到端服務,透明的傳送報文。6會話層:組織兩個會話進程之間的通信,並管理數據的交換。7表示層:處理在兩個通信系統中交換信息的表示方式。8應用層:應用層是OSI參考模型中的最高層。確定進程之間通信的性質,以滿足用戶的需要。TCP/IP參考模型可以分為:應用層,傳輸層,互連層,主機-網路層。互連層主要是負責將源主機的報文分組發送到目的主機,源主機與目的主機可以在一個網上,也可以不在一個網上。傳輸層主要功能是負責應用進程之間的端到端的通信。TCP/IP參考模型的傳輸層定義了兩種協議,既傳輸控制協議TCP和用戶數據報協議UDP。TCP協議是面向連接的可靠的協議。UDP協議是無連接的不可靠協議。主機-網路層負責通過網路發送和接受IP數據報。按照層次結構思想,對計算機網路模塊化的研究結果是形成了一組從上到下單向依賴關系的協議棧,也叫協議族。應用層協議分為:1。一類依賴於面向連接的TCP。2.一類是依賴於面向連接的UDP協議。10另一類既依賴於TCP協議,也可以依賴於UDP協議。NSFNET採用的是一種層次結構,可以分為主幹網,地區網與校園網。作為信息高速公路主要技術基礎的數據通信網具有以下特點:1適應大容量與突發性通信的要求。2適應綜合業務服務的要求。3開放的設備介面與規范化的協議。4完善的通信服務與網路管理。人們將採用X。25建議所規定的DTE與DCE介面標準的公用分組交換網叫做X。25網。幀中繼是一種減少接點處理時間的技術。綜合業務數字網ISDN:B-ISDN與N-ISDN的區別主要在:2N是以目前正在使用的公用電話交換網為基礎,而B是以光纖作為干線和用戶環路傳輸介質。3N採用同步時分多路復用技術,B採用非同步傳輸模式ATM技術。4N各通路速率是預定的,B使用通路概念,速率不預定。非同步傳輸模式ATM是新一代的數據傳輸與分組交換技術,是當前網路技術研究與應用的熱點問題。ATM技術的主要特點是:3ATM是一種面向連接的技術,採用小的,固定長度的數據傳輸單元。4各類信息均採用信元為單位進行傳送,ATM能夠支持多媒體通信。5ATM以統計時分多路復用方式動態的分配網路,網路傳輸延遲小,適應實時通信的要求。6ATM沒有鏈路對鏈路的糾錯與流量控制,協議簡單,數據交換率高。7ATM的數據傳輸率在155Mbps-2。4Gbps。促進ATM發展的要素:2人們對網路帶寬要求的不斷增長。3用戶對寬頻智能使用靈活性的要求。4用戶對實時應用的需求。5網路的設計與組建進一步走向標准化的需求。一個國家的信息高速路分為:國家寬頻主幹網,地區寬頻主幹網與連接最終用戶的接入網。解決接入問題的技術叫做接入技術。可以作為用戶接入網三類:郵電通信網,計算機網路(最有前途),廣播電視網。網路管理包括五個功能:配置管理,故障管理,性能管理,計費管理和安全管理。代理位於被管理的設備內部,它把來自管理者的命令或信息請求轉換為本設備特有的指令,完成管理者的指示,或返回它所在設備的信息。管理者和代理之間的信息交換可以分為兩種:從管理者到代理的管理操作;從代理到管理者的事件通知。配置管理的目標是掌握和控制網路和系統的配置信息以及網路各設備的狀態和連接管理。現代網路設備由硬體和設備驅動組成。配置管理最主要的作用是可以增強網路管理者對網路配置的控制,它是通過對設備的配置數據提供快速的訪問來實現的。故障就是出現大量或嚴重錯誤需要修復的異常情況。故障管理是對計算機網路中的問題或故障進行定位的過程。故障管理最主要的作用是通過提供網路管理者快速的檢查問題並啟動恢復過程的工具,使網路的可靠性得到增強。故障標簽就是一個監視網路問題的前端進程。性能管理的目標是衡量和呈現網路特性的各個方面,使網路的性能維持在一個可以接受的水平上。性能管理包括監視和調整兩大功能。記費管理的目標是跟蹤個人和團體用戶對網路資源的使用情況,對其收取合理的費用。記費管理的主要作用是網路管理者能測量和報告基於個人或團體用戶的記費信息,分配資源並計算用戶通過網路傳輸數據的費用,然後給用戶開出帳單。安全管理的目標是按照一定的方法控制對網路的訪問,以保證網路不被侵害,並保證重要的信息不被未授權用戶訪問。安全管理是對網路資源以及重要信息訪問進行約束和控制。在網路管理模型中,網路管理者和代理之間需要交換大量的管理信息,這一過程必須遵循統一的通信規范,我們把這個通信規范稱為網路管理協議。網路管理協議是高層網路應用協議,它建立在具體物理網路及其基礎通信協議基礎上,為網路管理平台服務。目前使用的標准網路管理協議包括:簡單網路管理協議SNMP,公共管理信息服務/協議CMIS/CMIP,和區域網個人管理協議LMMP等。SNMP採用輪循監控方式。代理/管理站模式。管理節點一般是面向工程應用的工作站級計算機,擁有很強的處理能力。代理節點可以是網路上任何類型的節點。SNMP是一個應用層協議,在TCP/IP網路中,它應用傳輸層和網路層的服務向其對等層傳輸信息。CMIP的優點是安全性高,功能強大,不僅可用於傳輸管理數據,還可以執行一定的任務。信息安全包括5個基本要素:機密性,完整性,可用性,可控性與可審查性。3D1級。D1級計算機系統標准規定對用戶沒有驗證。例如DOS。WINDOS3。X及WINDOW95(不在工作組方式中)。Apple的System7。X。4C1級提供自主式安全保護,它通過將用戶和數據分離,滿足自主需求。C1級又稱為選擇安全保護系統,它描述了一種典型的用在Unix系統上的安全級別。C1級要求硬體有一定的安全級別,用戶在使用前必須登陸到系統。C1級的防護的不足之處在與用戶直接訪問操作系統的根。9C2級提供比C1級系統更細微的自主式訪問控制。為處理敏感信息所需要的最底安全級別。C2級別還包含有受控訪問環境,該環境具有進一步限制用戶執行一些命令或訪問某些文件的許可權,而且還加入了身份驗證級別。例如UNIX系統。XENIX。Novell3。0或更高版本。WINDOWSNT。10B1級稱為標記安全防護,B1級支持多級安全。標記是指網上的一個對象在安全保護計劃中是可識別且受保護的。B1級是第一種需要大量訪問控制支持的級別。安全級別存在保密,絕密級別。11B2又稱為結構化保護,他要求計算機系統中的所有對象都要加上標簽,而且給設備分配安全級別。B2級系統的關鍵安全硬體/軟體部件必須建立在一個形式的安全方法模式上。12B3級又叫安全域,要求用戶工作站或終端通過可信任途徑連接到網路系統。而且這一級採用硬體來保護安全系統的存儲區。B3級系統的關鍵安全部件必須理解所有客體到主體的訪問,必須是防竄擾的,而且必須足夠小以便分析與測試。30A1最高安全級別,表明系統提供了最全面的安全,又叫做驗證設計。所有來自構成系統的部件來源必須有安全保證,以此保證系統的完善和安全,安全措施還必須擔保在銷售過程中,系統部件不受傷害。網路安全從本質上講就是網路上的信息安全。凡是涉及到網路信息的保密性,完整性,可用性,真實性和可控性的相關技術和理論都是網路安全的研究領域。安全策約是在一個特定的環境里,為保證提供一定級別的安全保護所必須遵守的規則。安全策約模型包括了建立安全環境的三個重要組成部分:威嚴的法律,先進的技術和嚴格的管理。網路安全是網路系統的硬體,軟體以及系統中的數據受到保護,不會由於偶然或惡意的原因而遭到破壞,更改,泄露,系統能連續,可靠和正常的運行,網路服務不中斷。保證安全性的所有機制包括以下兩部分:1對被傳送的信息進行與安全相關的轉換。2兩個主體共享不希望對手得知的保密信息。安全威脅是某個人,物,事或概念對某個資源的機密性,完整性,可用性或合法性所造成的危害。某種攻擊就是某種威脅的具體實現。安全威脅分為故意的和偶然的兩類。故意威脅又可以分為被動和主動兩類。中斷是系統資源遭到破壞或變的不能使用。這是對可用性的攻擊。截取是未授權的實體得到了資源的訪問權。這是對保密性的攻擊。修改是未授權的實體不僅得到了訪問權,而且還篡改了資源。這是對完整性的攻擊。捏造是未授權的實體向系統中插入偽造的對象。這是對真實性的攻擊。被動攻擊的特點是偷聽或監視傳送。其目的是獲得正在傳送的信息。被動攻擊有:泄露信息內容和通信量分析等。主動攻擊涉及修改數據流或創建錯誤的數據流,它包括假冒,重放,修改信息和拒絕服務等。假冒是一個實體假裝成另一個實體。假冒攻擊通常包括一種其他形式的主動攻擊。重放涉及被動捕獲數據單元以及後來的重新發送,以產生未經授權的效果。修改消息意味著改變了真實消息的部分內容,或將消息延遲或重新排序,導致未授權的操作。拒絕服務的禁止對通信工具的正常使用或管理。這種攻擊擁有特定的目標。另一種拒絕服務的形式是整個網路的中斷,這可以通過使網路失效而實現,或通過消息過載使網路性能降低。防止主動攻擊的做法是對攻擊進行檢測,並從它引起的中斷或延遲中恢復過來。從網路高層協議角度看,攻擊方法可以概括為:服務攻擊與非服務攻擊。服務攻擊是針對某種特定網路服務的攻擊。非服務攻擊不針對某項具體應用服務,而是基於網路層等低層協議進行的。非服務攻擊利用協議或操作系統實現協議時的漏洞來達到攻擊的目的,是一種更有效的攻擊手段。網路安全的基本目標是實現信息的機密性,完整性,可用性和合法性。主要的可實現威脅:3滲入威脅:假冒,旁路控制,授權侵犯。4植入威脅:特洛伊木馬,陷門。病毒是能夠通過修改其他程序而感染它們的一種程序,修改後的程序裡麵包含了病毒程序的一個副本,這樣它們就能繼續感染其他程序。網路反病毒技術包括預防病毒,檢測病毒和消毒三種技術。1預防病毒技術。它通過自身長駐系統內存,優先獲得系統的控制權,監視和判斷系統中是或有病毒存在,進而阻止計算機病毒進入計算機系統對系統進行破壞。這類技術有:加密可執行程序,引導區保護,系統監控與讀寫控制。2.檢測病毒技術。通過對計算機病毒的特徵來進行判斷的技術。如自身效驗,關鍵字,文件長度的變化等。3.消毒技術。通過對計算機病毒的分析,開發出具有刪除病毒程序並恢復原元件的軟體。網路反病毒技術的具體實現方法包括對網路伺服器中的文件進行頻繁地掃描和檢測,在工作站上用防病毒晶元和對網路目錄以及文件設置訪問許可權等。網路信息系統安全管理三個原則:1多人負責原則。2任期有限原則。3職責分離原則。保密學是研究密碼系統或通信安全的科學,它包含兩個分支:密碼學和密碼分析學。需要隱藏的消息叫做明文。明文被變換成另一種隱藏形式被稱為密文。這種變換叫做加密。加密的逆過程叫組解密。對明文進行加密所採用的一組規則稱為加密演算法。對密文解密時採用的一組規則稱為解密演算法。加密演算法和解密演算法通常是在一組密鑰控制下進行的,加密演算法所採用的密鑰成為加密密鑰,解密演算法所使用的密鑰叫做解密密鑰。密碼系統通常從3個獨立的方面進行分類:1按將明文轉化為密文的操作類型分為:置換密碼和易位密碼。所有加密演算法都是建立在兩個通用原則之上:置換和易位。2按明文的處理方法可分為:分組密碼(塊密碼)和序列密碼(流密碼)。3按密鑰的使用個數分為:對稱密碼體制和非對稱密碼體制。如果發送方使用的加密密鑰和接受方使用的解密密鑰相同,或從其中一個密鑰易於的出另一個密鑰,這樣的系統叫做對稱的,但密鑰或常規加密系統。如果發送放使用的加密密鑰和接受方使用的解密密鑰不相同,從其中一個密鑰難以推出另一個密鑰,這樣的系統就叫做不對稱的,雙密鑰或公鑰加密系統。分組密碼的加密方式是首先將明文序列以固定長度進行分組,每一組明文用相同的密鑰和加密函數進行運算。分組密碼設計的核心上構造既具有可逆性又有很強的線性的演算法。序列密碼的加密過程是將報文,話音,圖象,數據等原始信息轉化成明文數據序列,然後將它同密鑰序列進行異或運算。生成密文序列發送給接受者。數據加密技術可以分為3類:對稱型加密,不對稱型加密和不可逆加密。對稱加密使用單個密鑰對數據進行加密或解密。不對稱加密演算法也稱為公開加密演算法,其特點是有兩個密鑰,只有兩者搭配使用才能完成加密和解密的全過程。不對稱加密的另一用法稱為「數字簽名」,既數據源使用其私有密鑰對數據的效驗和或其他與數據內容有關的變數進行加密,而數據接受方則用相應的公用密鑰解讀「數字簽名」,並將解讀結果用於對數據完整性的檢驗。不可逆加密演算法的特徵是加密過程不需要密鑰,並且經過加密的數據無法被解密,只有同樣輸入的輸入數據經過同樣的不可逆演算法才能得到同樣的加密數據。加密技術應用於網路安全通常有兩種形式,既面向網路和面向應用程序服務。面向網路服務的加密技術通常工作在網路層或傳輸層,使用經過加密的數據包傳送,認證網路路由及其其他網路協議所需的信息,從而保證網路的連通性和可用性不受侵害。面向網路應用程序服務的加密技術使用則是目前較為流行的加密技術的使用方法。從通信網路的傳輸方面,數據加密技術可以分為3類:鏈路加密方式,節點到節點方式和端到端方式。鏈路加密方式是一般網路通信安全主要採用的方式。節點到節點加密方式是為了解決在節點中數據是明文的缺點,在中間節點里裝有加,解密的保護裝置,由這個裝置來完成一個密鑰向另一個密鑰的變換。在端到端機密方式中,由發送方加密的數據在沒有到達最終目的節點之前是不被解密的。試圖發現明文或密鑰的過程叫做密碼分析。演算法實際進行的置換和轉換由保密密鑰決定。密文由保密密鑰和明文決定。對稱加密有兩個安全要求:1需要強大的加密演算法。2發送方和接受方必須用安全的方式來獲得保密密鑰的副本。常規機密的安全性取決於密鑰的保密性,而不是演算法的保密性。IDEA演算法被認為是當今最好最安全的分組密碼演算法。公開密鑰加密又叫做非對稱加密。公鑰密碼體制有兩個基本的模型,一種是加密模型,一種是認證模型。通常公鑰加密時候使用一個密鑰,在解密時使用不同但相關的密鑰。常規加密使用的密鑰叫做保密密鑰。公鑰加密使用的密鑰對叫做公鑰或私鑰。RSA體制被認為是現在理論上最為成熟完善的一種公鑰密碼體制。密鑰的生存周期是指授權使用該密鑰的周期。在實際中,存儲密鑰最安全的方法就是將其放在物理上安全的地方。密鑰登記包括將產生的密鑰與特定的應用綁定在一起。密鑰管理的重要內容就是解決密鑰的分發問題。密鑰銷毀包括清除一個密鑰的所有蹤跡。密鑰分發技術是將密鑰發送到數據交換的兩方,而其他人無法看到的地方。數字證書是一條數字簽名的消息,它通常用與證明某個實體的公鑰的有效性。數字證書是一個數字結構,具有一種公共的格式,它將某一個成員的識別符和一個公鑰值綁定在一起。人們採用數字證書來分發公鑰。序列號:由證書頒發者分配的本證書的唯一標示符。認證是防止主動攻擊的重要技術,它對於開放環境中的各種信息系統的安全有重要作用。認證是驗證一個最終用戶或設備的聲明身份的過程。主要目的為:4驗證信息的發送者是真正的,而不是冒充的,這稱為信源識別。5驗證信息的完整性,保證信息在傳送過程中未被竄改,重放或延遲等。認證過程通常涉及加密和密鑰交換。帳戶名和口令認證方式是最常用的一種認證方式。授權是把訪問權授予某一個用戶,用戶組或指定系統的過程。訪問控制是限制系統中的信息只能流到網路中的授權個人或系統。有關認證使用的技術主要有:消息認證,身份認證和數字簽名。消息認證的內容包括為:1證實消息的信源和信宿。2消息內容是或曾受到偶然或有意的篡改。3消息的序號和時間性。消息認證的一般方法為:產生一個附件。身份認證大致分為3類:1個人知道的某種事物。2個人持證3個人特徵。口令或個人識別碼機制是被廣泛研究和使用的一種身份驗證方法,也是最實用的認證系統所依賴的一種機制。為了使口令更加安全,可以通過加密口令或修改加密方法來提供更強健的方法,這就是一次性口令方案,常見的有S/KEY和令牌口令認證方案。持證為個人持有物。數字簽名的兩種格式:2經過密碼變換的被簽名信息整體。3附加在被簽消息之後或某個特定位置上的一段簽名圖樣。對與一個連接來說,維持認證的唯一法是同時使用連接完整性服務。防火牆總體上分為包過濾,應用級網關和代理服務等幾大類型。數據包過濾技術是在網路層對數據包進行選擇。應用級網關是在網路應用層上建立協議過濾和轉發功能。代理服務也稱鏈路級網關或TCP通道,也有人將它歸於應用級網關一類。防火牆是設置在不同網路或網路安全域之間的一系列不見的組合。它可以通過檢測,限制,更改跨越防火牆的數據流,盡可能的對外部屏蔽網路內部的消息,結構和運行情況,以此來實現網路的安全保護。防火牆的設計目標是:1進出內部網的通信量必須通過防火牆。2隻有那些在內部網安全策約中定義了的合法的通信量才能進出防火牆。3防火牆自身應該防止滲透。防火牆能有效的防止外來的入侵,它在網路系統中的作用是:1控制進出網路的信息流向和信息包。2提供使用和流量的日誌和審記。3隱藏內部IP以及網路結構細節。4提供虛擬專用網功能。通常有兩種設計策約:允許所有服務除非被明確禁止;禁止所有服務除非被明確允許。防火牆實現站點安全策約的技術:3服務控制。確定在圍牆外面和裡面可以訪問的INTERNET服務類型。4方向控制。啟動特定的服務請求並允許它通過防火牆,這些操作具有方向性。5用戶控制。根據請求訪問的用戶來確定是或提供該服務。6行為控制。控制如何使用某種特定的服務。影響防火牆系統設計,安裝和使用的網路策約可以分為兩級:高級的網路策約定義允許和禁止的服務以及如何使用服務。低級的網路策約描述了防火牆如何限制和過濾在高級策約中定義的服務。
2. 對稱密鑰體制與公鑰密鑰體制的特點各自是什麼各有何優缺點
對稱密鑰體制是加密密鑰與解密密鑰密碼相同,兩個參與者共享同一個密鑰。
公鑰密碼體制是使用不同的加密密鑰和解密密鑰,加密密鑰是公開信息,而解密密鑰需要保密。
公鑰密碼體制有很多良好的特性,它不僅可以用來加密,還可以很方便的用於鑒別和數字簽名。但公鑰密碼演算法比對稱密鑰密碼演算法要慢好幾個數量級。
對稱密鑰體制的加解密速度快且安全強度高,但密鑰難管理和傳送,不適於在網路中單獨使用。
密鑰的產生
1、選擇兩個大素數,p和q。
2、計算:n = p * q (p,q分別為兩個互異的大素數,p,q必須保密,一般要求p,q為安全素數,n的長度大於512bit,這主要是因為RSA演算法的安全性依賴於因子分解大數問題)。有歐拉函數(n)=(p-1)(q-1)。
3、然後隨機選擇加密密鑰e,要求e和( p - 1 ) * ( q - 1 )互質。
4、最後,利用Euclid演算法計算解密密鑰d,滿足de≡1(modφ(n))。其中n和d也要互質。數e和n是公鑰,d是私鑰。兩個素數p和q不再需要,應該丟棄,不要讓任何人知道。
3. 計算機網路信息安全技術上密碼技術的發展了那幾個階段分別發生了那些顯著的變化
主要分三個階段!
密碼學是一個即古老又新興的學科。密碼學(Cryptology)一字源自希臘文"krypto's"及"logos"兩字,直譯即為"隱藏"及"訊息"之意。密碼學有一個奇妙的發展歷程,當然,密而不宣總是扮演主要角色。所以有人把密碼學的發展劃分為三個階段:
第一階段為從古代到1949年。這一時期可以看作是科學密碼學的前夜時期,這階段的密碼技術可以說是一種藝術,而不是一種科學,密碼學專家常常是憑知覺和信念來進行密碼設計和分析,而不是推理和證明。
早在古埃及就已經開始使用密碼技術,但是用於軍事目的,不公開。
1844年,薩米爾·莫爾斯發明了莫爾斯電碼:用一系列的電子點劃來進行電報通訊。電報的出現第一次使遠距離快速傳遞信息成為可能,事實上,它增強了西方各國的通訊能力。
20世紀初,義大利物理學家奎里亞摩·馬可尼發明了無線電報,讓無線電波成為新的通訊手段,它實現了遠距離通訊的即時傳輸。馬可尼的發明永遠地改變了密碼世界。由於通過無線電波送出的每條信息不僅傳給了己方,也傳送給了敵方,這就意味著必須給每條信息加密。
隨著第一次世界大戰的爆發,對密碼和解碼人員的需求急劇上升,一場秘密通訊的全球戰役打響了。
在第一次世界大戰之初,隱文術與密碼術同時在發揮著作用。在索姆河前線德法交界處,盡管法軍哨兵林立,對過往行人嚴加盤查,德軍還是對協約國的駐防情況了如指掌,並不斷發動攻勢使其陷入被動,法國情報人員都感到莫名其妙。一天,有位提籃子的德國農婦在過邊界時受到了盤查。哨兵打開農婦提著的籃子,見里頭都是煮熟的雞蛋,亳無可疑之處,便無意識地拿起一個拋向空中,農婦慌忙把它接住。哨兵們覺得這很可疑,他們將雞蛋剝開,發現蛋白上布滿了字跡,都是英軍的詳細布防圖,還有各師旅的番號。原來,這種傳遞情報的方法是德國一位化學家提供的,其作法並不復雜:用醋酸在蛋殼上寫字,等醋酸幹了後,再將雞蛋煮熟,字跡便透過蛋殼印在蛋白上,外面卻沒有任何痕跡。
1914年8月5日,英國「泰爾哥尼亞」號船上的潛水員割斷了德國在北大西洋海下的電纜。他們的目的很簡單,就是想讓德國的日子更難過,沒想到這卻使德方大量的通訊從電纜轉向了無線電。結果,英方截取了大量原本無法得到的情報。情報一旦截獲,就被送往40號房間——英國海軍部的密件分析部門。40號房間可以說是現代密件分析組織的原型,這里聚集了數學家、語言學家、棋類大師等任何善於解謎的人。
1914年9月,英國人收到了一份「珍貴」的禮物:同盟者俄國人在波羅的海截獲了一艘德國巡洋艦「瑪格德伯格」號,得到一本德國海軍的密碼本。他們立即將密碼本送至40號房間,允許英國破譯德國海軍的密件,並在戰爭期間圍困德軍戰船。能夠如此直接、順利且經常差不多是同時讀取德國海軍情報的情況,在以往的戰事中幾乎從未發生過。
密碼學歷史上最偉大的密碼破譯事件開始於1917年1月17日。當時英軍截獲了一份以德國最高外交密碼0075加密的電報,這個令人無法想像的系統由一萬個詞和片語組成,與一千個數字碼群對應。密電來自德國外交部長阿瑟·齊麥曼,傳送給他的駐華盛頓大使約翰·馮·貝倫朵爾夫,然後繼續傳給德國駐墨西哥大使亨尼希·馮·艾克哈爾特,電文將在那裡解密,然後交給墨西哥總統瓦律斯提阿諾·加漢扎。
密件從柏林經美國海底電纜送到了華盛頓,英軍在那裡將其截獲並意識到了它的重要性。但是,同樣接到密件的約翰·馮·貝倫朵爾夫卻在他的華盛頓辦公室里犯了個致命的錯誤:他們將電報用新的0075密件本譯出,然後又用老的密件本加密後用電報傳送到墨西哥城。大使先生沒有意識到,他已經犯下了一個密碼使用者所能犯的最愚蠢的、最可悲的錯誤。
此時,已經破譯了老密碼的英方正對著這個未曾破譯的新外交密碼系統一籌莫展,不過沒過多久,他們便從大使先生的糊塗操作中獲得了新舊密碼的比較版本。隨著齊麥曼的密件逐漸清晰起來,其重要性令人吃驚。
盡管1915年美國的遠洋客輪「露斯塔尼亞」號被德軍擊沉,但只要德國對其潛艇的行動加以限制,美國仍將一直保持中立。齊麥曼的電文概括了德國要在1917年2月1日重新開始無限制海戰以抑制英國的企圖。為了讓美國原地不動,齊麥曼建議墨西哥入侵美國,重新宣布得克薩斯州、新墨西哥州和亞里桑納州歸其所有。德國還要墨西哥說服日本進攻美國,德國將提供軍事和資金援助。
英國海軍部急於將破譯的情報通知美國而又不能讓德國知道他們的密碼已被破譯。於是,英國的一個特工成功地滲入了墨西哥電報局,得到了送往墨西哥總統的解了密的文件拷貝。這樣,秘密就可能是由墨西哥方泄露的,他們以此為掩護將情報透露給了美國。
美國憤怒了。每個人都被激怒了,原先只是東海岸的人在關心,現在,整個中西部都擔心墨西哥的舉動。電文破譯後六個星期,美國對德國宣戰。當總統伍德羅·威爾遜要求對德宣戰時,站在他背後的,是一個團結起來的憤怒的國家,它時刻准備對德作戰。
這可能是密碼破譯史上,當然也是情報史上最著名的事件。齊麥曼的電文使整個美國相信德國是國家的敵人。德國利用密碼破譯擊敗了俄軍,反過來又因自己的密碼被破譯而加速走向了滅亡。
第一次世界大戰前,重要的密碼學進展很少出現在公開文獻中。直到1918年,二十世紀最有影響的密碼分析文章之一¾¾William F. Friedman的專題論文《重合指數及其在密碼學中的應用》作為私立的「河岸(Riverbank)實驗室」的一份研究報告問世了,其實,這篇著作涉及的工作是在戰時完成的。一戰後,完全處於秘密工作狀態的美國陸軍和海軍的機要部門開始在密碼學方面取得根本性的進展。但是公開的文獻幾乎沒有。
然而技術卻在飛速的發展,簡單的明文字母替換法已經被頻率分析法毫無難度地破解了,曾經認為是完美的維吉耐爾(Vigenere)密碼和它的變種也被英國人Charles Babbage破解了。順便說一句,這個Charles Babbage可不是凡人,他設計了差分機Difference Engine和分析機Analytical Engine,而這東西就是現在計算機的先驅。這個事實給了人們兩個啟示:第一,沒有哪種「絕對安全」的密碼是不會被攻破的,這只是個時間問題;第二,破譯密碼看來只要夠聰明就成。在二次大戰中,密碼更是扮演一個舉足輕重的角色,許多人認為同盟國之所以能打贏這場戰爭完全歸功於二次大戰時所發明的破譯密文數位式計算機破解德日密碼。
1918年,加州奧克蘭的Edward H.Hebern申請了第一個轉輪機專利,這種裝置在差不多50年裡被指定為美軍的主要密碼設備,它依靠轉輪不斷改變明文和密文的字母映射關系。由於有了轉輪的存在,每轉動一格就相當於給明文加密一次,並且每次的密鑰不同,而密鑰的數量就是全部字母的個數――26個。
同年,密碼學界的一件大事「終於」發生了:在德國人Arthur Scherbius天才的努力下,第一台非手工編碼的密碼機――ENIGMA密碼機橫空出世了。密碼機是德軍在二戰期間最重要的通訊利器,也是密碼學發展史上的一則傳奇。當時盟軍借重英國首都倫敦北方布萊奇利公園的「政府電碼與密碼學院」,全力破譯德軍之「謎」。雙方隔著英吉利海峽鬥智,寫下一頁精彩無比的戰史,後來成為無數電影與影集的主要情節,「獵殺U571」也是其中之一。
隨著高速、大容量和自動化保密通信的要求,機械與電路相結合的轉輪加密設備的出現,使古典密碼體制也就退出了歷史舞台。
第二階段為從1949年到1975年。
1949年仙農(Claude Shannon)《保密系統的通信理論》,為近代密碼學建立了理論基礎。從1949年到1967年,密碼學文獻近乎空白。許多年,密碼學是軍隊獨家專有的領域。美國國家安全局以及前蘇聯、英國、法國、以色列及其它國家的安全機構已將大量的財力投入到加密自己的通信,同時又千方百計地去破譯別人的通信的殘酷游戲之中,面對這些政府,個人既無專門知識又無足夠財力保護自己的秘密。
1967年,David Kahn《破譯者》(The CodeBreaker)的出現,對以往的密碼學歷史作了相當完整的記述。《破譯者》的意義不僅在於涉及到相當廣泛的領域,它使成千上萬的人了解了密碼學。此後,密碼學文章開始大量涌現。大約在同一時期,早期為空軍研製敵我識別裝置的Horst Feistel在位於紐約約克鎮高地的IBM Watson實驗室里花費了畢生精力致力於密碼學的研究。在那裡他開始著手美國數據加密標准(DES)的研究,到70年代初期,IBM發表了Feistel和他的同事在這個課題方面的幾篇技術報告。
第三階段為從1976年至今。1976年diffie 和 hellman 發表的文章「密碼學的新動向」一文導致了密碼學上的一場革命。他們首先證明了在發送端和接受端無密鑰傳輸的保密通訊是可能的,從而開創了公鑰密碼學的新紀元。
1978年,R.L.Rivest,A.Shamir和L.Adleman實現了RSA公鑰密碼體制。
1969年,哥倫比亞大學的Stephen Wiesner首次提出「共軛編碼」(Conjugate coding)的概念。1984年,H. Bennett 和G. Brassard在次思想啟發下,提出量子理論BB84協議,從此量子密碼理論宣告誕生。其安全性在於:1、可以發現竊聽行為;2、可以抗擊無限能力計算行為。
1985年,Miller和Koblitz首次將有限域上的橢圓曲線用到了公鑰密碼系統中,其安全性是基於橢圓曲線上的離散對數問題。
1989年R.Mathews, D.Wheeler, L.M.Pecora和Carroll等人首次把混沌理論使用到序列密碼及保密通信理論,為序列密碼研究開辟了新途徑。
2000年,歐盟啟動了新歐洲數據加密、數字簽名、數據完整性計劃NESSIE,究適應於21世紀信息安全發展全面需求的序列密碼、分組密碼、公開密鑰密碼、hash函數以及隨機雜訊發生器等技術。
建議你可以參考下:密碼學基礎、密碼學原理、OpenSSL等書籍
4. 什麼是對稱密碼和非對密碼,分析這兩種密碼體系的特點和應用領域
一、對稱密碼
1、定義:採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密,也稱為單密鑰加密。
2、特點:演算法公開、計算量小、加密速度快、加密效率高。
3、應用領域:由於其速度快,對稱性加密通常在消息發送方需要加密大量數據時使用。
二、非對密碼
1、定義:非對稱密碼指的是非對稱密碼體制中使用的密碼。
2、特點:
(1)是加密密鑰和解密密鑰不同 ,並且難以互推 。
(2)是有一個密鑰是公開的 ,即公鑰 ,而另一個密鑰是保密的 ,即私鑰。
3、應用領域:很好的解決了密鑰的分發和管理的問題 ,並且它還能夠實現數字簽名。
(4)計算機網路中的密碼體制擴展閱讀
對稱加密演算法特徵
1、加密方和解密方使用同一個密鑰;
2、加密解密的速度比較快,適合數據比較長時的使用;
3、密鑰傳輸的過程不安全,且容易被破解,密鑰管理也比較麻煩
5. 計算機網路系統中廣泛使用的DES演算法屬於什麼加密
對稱加密!DES演算法為密碼體制中的對稱密碼體制,又被成為美國數據加密標准,是1972年美國IBM公司研製的對稱密碼體制加密演算法。其密鑰長度為56位,明文按64位進行分組,將分組後的明文組和56位的密鑰按位替代或交換的方法形成密文組的加密方法。
哈哈 我學過
6. 比較計算機網路加密技術的三種方式的優缺點 分析各自適應范圍 大概說下
DES演算法的入口參數有三個:Key、Data、Mode。其中Key為7個位元組共56位,是DES演算法的工作密鑰;Data為8個位元組64位,是要被加密或被解密的數據;Mode為DES的工作方式,有兩種:加密或解密。
DES 作為貿易術語是意思是指賣方將貨物運至指定的目的港,並在船上交易.按此術語成交,買賣雙方責任、費用和風險的劃分,以目的港船上辦理交接手續為界。賣方承擔在目的港船上將貨交由買方處置以前的一切費用和風險,並按合同規定支付貨款。
IDEA(International Data Encryption Algorithm)在密碼學中屬於數據塊加密演算法(Block Cipher)類。IDEA使用長度為128bit的密鑰,數據塊大小為64bit。從理論上講,IDEA屬於「強」加密演算法,至今還沒有出現對該演算法的有效攻擊演算法。
SA公開密鑰密碼體制。所謂的公開密鑰密碼體制就是使用不同的加密密鑰與解密密鑰,是一種「由已知加密密鑰推導出解密密鑰在計算上是不可行的」密碼體制。
缺點
1)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。
2)安全性,RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價,而且密碼學界多數人士傾向於因子分解不是NP問題。
7. 比較通用密碼體制和公開密碼體制的特點
全稱應該是通用密鑰密碼體制和公開密鑰密碼體制。下面是關於兩種密碼體制的特點介紹。我也是學密碼學的如果有問題可以進一步交流。
傳統的加密方法是加密、解密使用同樣的密鑰,由發送者和接收者分別保存,在加密和解密時使用,採用這種方法的主要問題是密鑰的生成、注入、存儲、管理、分發等很復雜,特別是隨著用戶的增加,密鑰的需求量成倍增加。在網路通信中,大量密鑰的分配是一個難以解決的問題。
例如,若系統中有n個用戶,其中每兩個用戶之間需要建立密碼通信,則系統中每個用戶須掌握(n-1)/2個密鑰,而系統中所需的密鑰總數為n*(n-1)/2 個。對10個用戶的情況,每個用戶必須有9個密鑰,系統中密鑰的總數為45個。對100個用戶來說,每個用戶必須有99個密鑰,系統中密鑰的總數為4950個。這還僅考慮用戶之間的通信只使用一種會話密鑰的情況。如此龐大數量的密鑰生成、管理、分發確實是一個難處理的問題。
本世紀70年代,美國斯坦福大學的兩名學者迪菲和赫爾曼提出了一種新的加密方法--公開密鑰加密隊PKE方法。與傳統的加密方法不同,該技術採用兩個不同的密鑰來對信息加密和解密,它也稱為"非對稱式加密方法。每個用戶有一個對外公開的加密演算法E和對外保密的解密演算法D,
它們須滿足條件:
(1)D是E的逆,即D[E(X)]=X;
(2)E和D都容易計算。
(3)由E出發去求解D十分困難。
從上述條件可看出,公開密鑰密碼體制下,加密密鑰不等於解密密鑰。加密密鑰可對外公開,使任何用戶都可將傳送給此用戶的信息用公開密鑰加密發送,而該用戶唯一保存的私人密鑰是保密的,也只有它能將密文復原、解密。雖然解密密鑰理論上可由加密密鑰推算出來,但這種演算法設計在實際上是不可能的,或者雖然能夠推算出,但要花費很長的時間而成為不可行的。所以將加密密鑰公開也不會危害密鑰的安全。
數學上的單向陷門函數的特點是一個方向求值很容易,但其逆向計算卻很困難。基於這種理論,1978年出現了著名的RSA演算法。這種演算法為公用網路上信息的加密和鑒別提供了一種基本的方法。它通常是先生成一對RSA 密鑰,其中之一是保密密鑰,由用戶保存;另一個為公開密鑰,可對外公開,甚至可在網路伺服器中注冊。為提高保密強度,RSA密鑰至少為500位長,一般推薦使用1024位。這就使加密的計算量很大。為減少計算量,在傳送信息時,常採用傳統加密方法與公開密鑰加密方法相結合的方式,即信息採用改進的DES或IDEA對話密鑰加密,然後使用RSA密鑰加密對話密鑰和信息摘要。對方收到信息後,用不同的密鑰解密並可核對信息摘要。
RSA演算法的加密密鑰和加密演算法分開,使得密鑰分配更為方便。它特別符合計算機網路環境。對於網上的大量用戶,可以將加密密鑰用電話簿的方式印出。如果某用戶想與另一用戶進行保密通信,只需從公鑰簿上查出對方的加密密鑰,用它對所傳送的信息加密發出即可。對方收到信息後,用僅為自己所知的解密密鑰將信息脫密,了解報文的內容。由此可看出,RSA演算法解決了大量網路用戶密鑰管理的難題。
RSA並不能替代DES,它們的優缺點正好互補。 RSA的密鑰很長,加密速度慢,而採用DES,正好彌補了RSA的缺點。即DES用於明文加密,RSA用於DES密鑰的加密。由於DES加密速度快,適合加密較長的報文;而RSA可解決DES密鑰分配的問題。美國的保密增強郵件(PEM)就是採用了RSA 和DES結合的方法,目前已成為E-MAIL保密通信標准。
通用密鑰密碼體制
通用密鑰密碼體制的加密密鑰Ke和解密密鑰Kd是通用的,即發送方和接收方使用同樣密鑰的密碼體制,也稱之為「傳統密碼體制」。
在通用密碼體制中,目前得到廣泛應用的典型演算法是DES演算法。DES是由「轉置」方式和「換字」方式合成的通用密鑰演算法,先將明文(或密文)按64位分組,再逐組將64位的明文(或密文),用56位(另有8位奇偶校驗位,共64位)的密鑰,經過各種復雜的計算和變換,生成64位的密文(或明文),該演算法屬於分組密碼演算法。
DES演算法可以由一塊集成電路實現加密和解密功能。該演算法是對二進制數字化信息加密及解密的演算法,是通常數據通信中,用計算機對通信數據加密保護時使用的演算法。DES演算法在1977年作為數字化信息的加密標准,由美國商業部國家標准局制定,稱為「數據加密標准」,並以「聯邦信息處理標准公告」的名稱,於1977年1月15日正式公布。使用該標准,可以簡單地生成DES密碼。
8. 請問:單鑰體制和雙鑰體制的各自特點是什麼
單鑰體制信息的發送方和接收方使用同一個密鑰去加密和解密數據。它的最大優勢是加/解密速度快,適合於對大數據量進行加密,但密鑰管理困難。
公鑰需要使用不同的密鑰來分別完成加密和解密操作,一個公開發布,即公開密鑰,另一個由用戶自己秘密保存,即私用密鑰。
信息發送者用公開密鑰去加密,而信息接收者則用私用密鑰去解密,公鑰機制靈活,但加密和解密速度卻比對稱密鑰加密慢得多。
以在實際的應用中,人們通常將兩者結合在一起使用,例如對稱密鑰加密系統用於存儲大量數據信息,而公開密鑰加密系統則用於加密密鑰。
對於普通的對稱密碼學,加密運算與解密運算使用同樣的密鑰。通常,使用的對稱加密演算法比較簡便高效,密鑰簡短,破譯極其困難,由於系統的保密性主要取決於密鑰的安全性,所以,在公開的計算機網路上安全地傳送和保管密鑰是一個嚴峻的問題。
正是由於對稱密碼學中雙方都使用相同的密鑰,因此無法實現數據簽名和不可否認性等功能。
9. 數據加密中的密碼體制主要包括哪些內容
透明解密不影響工作效率
經過加密的數據文件,在授權計算機上打開時,不需要輸入密碼,不需要經過任何多餘的操作便能打開密文。在用戶打開密文時,根據其許可權自動對密文進行解密。因此,安裝加密軟體後,不會影響正常的工作效率。
自動備份保證企業數據不會遭受損失
提供自動備份功能,在數據加密的同時,可將不加密的數據自動備份到網路伺服器,免除企業使用加密軟體的擔憂和風險。
實現與現有管理系統無礙集成
只需要通過簡單的設置便能實現與現有管理系統進行集成。包括OA、PDM、ERP、CRM等不同的管理系統。 EDS成功與Lotus Notes、極限OA、KMPDM、英泰PDM、思普PDM、IntePDM、TeamCenter、Windchill、神瑪ERP、利瑪ERP、和佳ERP、Oracle、SAP等等進行過集成。
對於數據加密軟體在智融金甲加密官網針對這一點有詳細說明,可以搜索查看解決您的問題。
10. 什麼是單鑰密碼體制
分為: 單密鑰密碼體制和雙密鑰密碼體制,區別在於: 單密鑰密碼體制、加密和解密密鑰相同、雙密鑰密碼體制、加密和解密密鑰不相同