⑴ 在計算機網路中,數據交換的方式各有哪幾種
網路中常用的數據交換技術可分為兩大類:線路交換和存儲轉發交換,其中存儲轉發交換交換技術又可分為報文交換和分組交換。
線路交換
通過線路交換進行通信,就是要通過中間交換節點在兩個站點之間建立一條專業的通信線路。利用線路交換進行通信需三個階段:線路建立、數據傳輸和線路拆除。線路交換的特點是:數據傳輸可靠、迅速、有序,但線路利用率低、浪費嚴重,不適合計算機網路。
報文交換
報文交換採用"存儲-轉發"方式進行傳送,無需事先建立線路,事後更無需拆除。它的優點是:線路利用率高、故障的影響小、可以實現多目的報文;缺點是:延遲時間長且不定、對中間節點的要求高、通信不可靠、失序等,不適合計算機網路。
分組交換
分組由報文分解所得,大小固定。分組交換適用於計算機網路,在實際應用中有兩種類型:虛電路方式和數據報方式。虛電路方式類似"線路交換",只不過對信道的使用是非獨占方式;數據報方式類似"報文交換"。
報文的優點是:高效、靈活、迅速、可靠、經濟,但存在如下的缺點:有一定的延遲時間、額外的開銷會影響傳輸效率、實現技術復雜等。
⑵ 計算機網路採用什麼交換技術
計算機網路採用電路交換、報文交換、分組交換、信元交換四種技術。計算機網路是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來。在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。
隨著計算機及其互聯技術(也即通常所謂的「網路技術」)的迅速發展,乙太網成為了迄今為止普及率最高的短距離二層計算機網路。而乙太網的核心部件就是乙太網交換機。
不論是人工交換還是程式控制交換,都是為了傳輸語音信號,是需要獨占線路的「電路交換」。而乙太網是一種計算機網路,需要傳輸的是數據,因此採用的是「包交換」。但無論採取哪種交換方式,交換機為兩點間提供「獨享通路」的特性不會改變。就乙太網設備而言,交換機和集線器的本質區別就在於:當A發信息給B時,如果通過集線器,則接入集線器的所有網路節點都會收到這條信息(也就是以廣播形式發送),只是網卡在硬體層面就會過濾掉不是發給本機的信息;而如果通過交換機,除非A通知交換機廣播,否則發給B的信息C絕不會收到(獲取交換機控制許可權從而監聽的情況除外。
⑶ 常用的區域網傳輸技術有(給出任意三種)
在區域網中常用的傳輸介質有雙絞線、同軸電纜和光導纖維等。
一、雙絞線
雙絞線是由兩條外面被覆塑膠類絕緣材料、內含銅纜線,互相絕緣的雙線互相纏繞,絞合成螺旋狀的一種電纜線。雙絞線可減少發送中信號的衰減、減少串擾及雜訊、並改善了對外部電磁干擾的抑制能力。 它是由亞歷山大·格拉漢姆·貝爾 發明的。一百多年來,一直用於電話網。
二、同軸電纜
同軸電纜是一種電線及信號傳輸線,一般是由四層物料造成:最內里是一條導電銅線,線的外面有一層塑膠圍攏,絕緣體外面又有一層薄的網狀導電體,然後導電體外面是最外層的絕緣物料作為外皮。根據尺寸來分同軸電纜則有不同標准規格,從1/8英寸到9英寸直徑不等。
三、光纖維電纜
光導纖維電纜簡稱光纖電纜或光纜。隨著對數據傳輸速度的要求不斷提高,光纜的使用日益普遍。對於計算機網路來說,光纜具有無可比擬的優勢。
光纜由纖芯。包層和護套層組成。其中纖芯由玻璃或塑料製成,包層由玻璃製成,護套由塑料製成。
(3)計算機網路所採用的傳輸技術擴展閱讀:
機理
區域網(LocalAreaNetwork,LAN),又稱內網。指覆蓋局部區域(如辦公室或樓層)的計算機網路。按照網路覆蓋的區域(距離)不同,其他的網路類型還包括個人網、城域網、廣域網等。
早期的區域網網路技術都是各不同廠家所專有,互不兼容。後來,電機電子工程師學會推動了區域網技術的標准化,由此產生了IEEE 802系列標准。這使得在建設區域網時可以選用不同廠家的設備,並能保證其兼容性。
這一系列標准覆蓋了雙絞線、同軸電纜、光纖和無線等多種傳輸介質和組網方式,並包括網路測試和管理的內容。隨著新技術的不斷出現,這一系列標准仍在不斷的更新變化之中。
乙太網(IEEE 802.3標准)是最常用的區域網組網方式。乙太網使用雙絞線作為傳輸介質。在沒有中繼的情況下,最遠可以覆蓋200米的范圍。最普及的乙太網類型數據傳輸速率為100Mb/s,更新的標准則支持1000Mb/s和10Gb/s的速率。
其他主要的區域網類型有令牌環和FDDI(光纖分布數字介面,IEEE 802.8)。令牌環網路採用同軸電纜作為傳輸介質,具有更好的抗干擾性;但是網路結構不能很容易的改變。FDDI採用光纖傳輸,網路帶寬大,適於用作連接多個區域網的骨幹網。
近兩年來,隨著802.11標準的制定,無線區域網的應用大為普及。這一標准採用2.4GHz 和5.8GHz 的頻段,數據傳輸速度最高可以達到300Mbps和866Mbps。
區域網標準定義了傳輸介質、編碼和介質訪問等底層(一二層)功能。要使數據通過復雜的網路結構傳輸到達目的地,還需要具有定址、路由和流量控制等功能的網路協議的支持。
TCP/IP(傳輸控制協議/互聯網路協議)是最普遍使用的區域網網路協議。它也是互聯網所使用的網路協議。其他常用的區域網協議包括,IPX、AppleTalk等。
⑷ 舉例說明計算機網路中廣泛使用的兩種傳輸技術
點對點和廣播
⑸ 計算機網路中信號的傳輸方式可分為什麼
按照通信方式:1、廣播式傳輸網路、
2、點對點傳輸網路。
⑴按地理范圍分類
①區域網LAN(Local Area Network)
區域網地理范圍一般幾百米到10km之內,屬於小范圍內的連網。如一個建築物內、一個學校內、一個工廠的廠區內等。區域網的組建簡單、靈活,使用方便。
②城域網MAN(Metropolitan Area Network)
城域網地理范圍可從幾十公里到上百公里,可覆蓋一個城市或地區,是一種中等形式的網路。
③廣域網WAN(Wide Area Network)
廣域網地理范圍一般在幾千公里左右,屬於大范圍連網。如幾個城市,一個或幾個國家,是網路系統中的最大型的網路,能實現大范圍的資源共享,如國際性的Internet網路。
⑵按傳輸速率分類
網路的傳輸速率有快有慢,傳輸速率快的稱高速網,傳輸速率慢的稱低速網。傳輸速率的單位是b/s(每秒比特數,英文縮寫為bps)。一般將傳輸速率在Kb/s—Mb/s范圍的網路稱低速網,在Mb/s—Gb/s范圍的網稱高速網。也可以將Kb/s網稱低速網,將Mb/s網稱中速網,將Gb/s網稱高速網。
網路的傳輸速率與網路的帶寬有直接關系。帶寬是指傳輸信道的寬度,帶寬的單位是Hz(赫茲)。按照傳輸信道的寬度可分為窄帶網和寬頻網。一般將KHz—MHz帶寬的網稱為窄帶網,將MHz—GHz的網稱為寬頻網,也可以將kHz帶寬的網稱窄帶網,將MHz帶寬的網稱中帶網,將GHz帶寬的網稱寬頻網。通常情況下,高速網就是寬頻網,低速網就是窄帶網。
⑶按傳輸介質分類
傳輸介質是指數據傳輸系統中發送裝置和接受裝置間的物理媒體,按其物理形態可以劃分為有線和無線兩大類。
①有線網
傳輸介質採用有線介質連接的網路稱為有線網,常用的有線傳輸介質有雙絞線、同軸電纜和光導纖維。
●雙絞線是由兩根絕緣金屬線互相纏繞而成,這樣的一對線作為一條通信線路,由四對雙絞線構成雙絞線電纜。雙絞線點到點的通信距離一般不能超過100m。目前,計算機網路上使用的雙絞線按其傳輸速率分為三類線、五類線、六類線、七類線,傳輸速率在10Mbps到600Mbps之間,雙絞線電纜的連接器一般為RJ-45。
●同軸電纜由內、外兩個導體組成,內導體可以由單股或多股線組成,外導體一般由金屬編織網組成。內、外導體之間有絕緣材料,其阻抗為50Ω。同軸電纜分為粗纜和細纜,粗纜用DB-15連接器,細纜用BNC和T連接器。
●光纜由兩層折射率不同的材料組成。內層是具有高折射率的玻璃單根纖維體組成,外層包一層折射率較低的材料。光纜的傳輸形式分為單模傳輸和多模傳輸,單模傳輸性能優於多模傳輸。所以,光纜分為單模光纜和多模光纜,單模光纜傳送距離為幾十公里,多模光纜為幾公里。光纜的傳輸速率可達到每秒幾百兆位。光纜用ST或SC連接器。光纜的優點是不會受到電磁的干擾,傳輸的距離也比電纜遠,傳輸速率高。光纜的安裝和維護比較困難,需要專用的設備。
②無線網
採用無線介質連接的網路稱為無線網。目前無線網主要採用三種技術:微波通信,紅外線通信和激光通信。這三種技術都是以大氣為介質的。其中微波通信用途最廣,目前的衛星網就是一種特殊形式的微波通信,它利用地球同步衛星作中繼站來轉發微波信號,一個同步衛星可以覆蓋地球的三分之一以上表面,三個同步衛星就可以覆蓋地球上全部通信區域。
⑷按拓撲結構分類
計算機網路的物理連接形式叫做網路的物理拓撲結構。連接在網路上的計算機、大容量的外存、高速列印機等設備均可看作是網路上的一個節點,也稱為工作站。計算機網路中常用的拓撲結構有匯流排型、星型、環型等。
①匯流排拓撲結構
匯流排拓撲結構是一種共享通路的物理結構。這種結構中匯流排具有信息的雙向傳輸功能,普遍用於區域網的連接,匯流排一般採用同軸電纜或雙絞線。
匯流排拓撲結構的優點是:安裝容易,擴充或刪除一個節點很容易,不需停止網路的正常工作,節點的故障不會殃及系統。由於各個節點共用一個匯流排作為數據通路,信道的利用率高。但匯流排結構也有其缺點:由於信道共享,連接的節點不宜過多,並且匯流排自身的故障可以導致系統的崩潰。
②星型拓撲結構
星型拓撲結構是一種以中央節點為中心,把若干外圍節點連接起來的輻射式互聯結構。這種結構適用於區域網,特別是近年來連接的區域網大都採用這種連接方式。這種連接方式以雙絞線或同軸電纜作連接線路。
星型拓撲結構的特點是:安裝容易,結構簡單,費用低,通常以集線器(Hub)作為中央節點,便於維護和管理。中央節點的正常運行對網路系統來說是至關重要的。
③環型拓撲結構
環型拓撲結構是將網路節點連接成閉合結構。信號順著一個方向從一台設備傳到另一台設備,每一台設備都配有一個收發器,信息在每台設備上的延時時間是固定的。
這種結構特別適用於實時控制的區域網系統。
環型拓撲結構的特點是:安裝容易,費用較低,電纜故障容易查找和排除。有些網路系統為了提高通信效率和可靠性,採用了雙環結構,即在原有的單環上再套一個環,使每個節點都具有兩個接收通道。環型網路的弱點是,當節點發生故障時,整個網路就不能正常工作。
④樹型拓撲結構
樹型拓撲結構就像一棵「根」朝上的樹,與匯流排拓撲結構相比,主要區別在於匯流排拓撲結構中沒有「根」。這種拓撲結構的網路一般採用同軸電纜,用於軍事單位、政府部門等上、下界限相當嚴格和層次分明的部門。
樹型拓撲結構的特點:優點是容易擴展、故障也容易分離處理,缺點是整個網路對根的依賴性很大,一旦網路的根發生故障,整個系統就不能正常工作
⑹ 從廣義上講,按傳輸技術可將網路分為 種類型。
傳輸技術包括傳輸介質和通信方式,所以包括兩種分類方式:
傳輸介質
1.有線網:採用同軸電纜和雙絞線來連接的計算機網路。
同軸電纜網是常見的一種連網方式。它比較經濟,安裝較為便利,傳輸率和抗干擾能力一般,傳輸距離較短。
雙絞線網是目前最常見的連網方式。它價格便宜,安裝方便,但易受干擾,傳輸率較低,傳輸距離比同軸電纜要短。
2.光纖網:光纖網也是有線網的一種,但由於其特殊性而單獨列出,光纖網採用光導纖維作傳輸介質。光纖傳輸距離長,傳輸率高,可達數千兆bps,抗干擾性強,不會受到電子監聽設備的監聽,是高安全性網路的理想選擇。不過由於其價格較高,且需要高水平的安裝技術,所以尚未普及。
3.無線網:用電磁波作為載體來傳輸數據,無線網聯網費用較高,還不太普及。但由於聯網方式靈活方便,是一種很有前途的連網方式。
通信分類
1.點對點:數據以點到點的方式在計算機或通信設備中傳輸。星型網、環形網採用這種傳輸方式。
2.廣播式:數據在共用介質中傳輸。無線網和匯流排型網路屬於這種類型。
⑺ 為了提高計算機網路數據通信線路的利用率,計算機網路中採用什麼技術
為了提高網路中數據傳輸線路的利用率,
計算機網路採用多路復用技術,包括時分多路復用、頻分多路復用、波分多路復用
等技術。
請採納,謝謝
⑻ 計算機網路的數據交換技術有四種,分別是
電路交換、報文交換、分組交換、信元交換
電路交換:端對端通信質量因約定了通信資源獲得可靠保障,對連續傳送大量數據效率高。
報文交換:無須預約傳輸帶寬,動態逐段利用傳輸帶寬對突發式數據通信效率高,通信迅速。
分組交換:具有報文交換之高效、迅速的要點,且各分組小,路由靈活,網路生存性能好。
信元交換又叫ATM(非同步傳輸模式),是一種面向連接的快速分組交換技術,它是通過建立虛電路來進行數據傳輸的。
(8)計算機網路所採用的傳輸技術擴展閱讀:
報文交換的原理是當發送方的信息到達報文交換用的計算機時,先存放在外存儲器中,待中央處理機分析報頭,確定轉發路由,並選到與此路由相應的輸出電路上進行排隊,等待輸出。一旦電路空閑,立即將報文從外存儲器取出後發出,這就提高了這條電路的利用率。
報文交換雖然提高了電路的利用率,但報文經存儲轉發後會產生較大的時延。分組交換也是一種存儲轉發交換方式,但與報文交換不同,它是把報文劃分為一定長度的分組,以分組為單位進行存儲轉發。
這就不但具備了報文交換方式提高電路利用率的優點,同時克服了時延大的缺點。
參考資料來源:網路-數據交換
⑼ 按照網路的傳輸方式計算機網路可以分為
按照網路傳輸方式,計算機網路可分為點-點式網路和廣播式網路。按覆蓋的地理范圍進行分類,計算機網路可分為區域網、城域網與廣域網。
①點-點網路採用點-點通信信道,即通信僅限於相互有連接信道的一對計算機之間,類似於電話通信。
②廣播式網路採用廣播式信道,即將多個計算機連接到一條公共信道上,一個站點發送信息,信道上的其餘站點都可以接收到信息,類似於無線電廣播。
(9)計算機網路所採用的傳輸技術擴展閱讀:
按交換方式分,計算機網路可分為電路交換網、報文交換網和分組交換網。
按傳輸介質劃分:
1、有線網:指採用雙絞線來連接的計算機網路。
2、光纖網:採用光導纖維作為傳輸介質。
3、無線網:採用一種電磁波作為載體來實現數據傳輸的網路類型。
按通信方式劃分:
1、廣播式傳輸網路。
2、點到點式傳輸網路。
從邏輯功能上看,計算機網路是以傳輸信息為基礎目的,用通信線路將多個計算機連接起來的計算機系統的集合,一個計算機網路組成包括傳輸介質和通信設備。
從用戶角度看,計算機網路是這樣定義的:存在著一個能為用戶自動管理的網路操作系統。由它調用完成用戶所調用的資源,而整個網路像一個大的計算機系統一樣,對用戶是透明的。
⑽ 在網路中「 寬頻傳輸」,「基帶傳輸」,「頻帶傳輸」各是什麼…
電信號也叫信號,信號的每秒鍾變化的次數叫頻率,單位赫茲(HZ)。信號的頻率有高有低,就象聲音有高有低一樣,低頻到高頻的范圍叫頻帶,不同的信號有不同的頻帶。
基帶傳輸
在數據通信中,由計算機或終端等數字設備直接發出的二進制數字信號形式稱為方波,即「1」或「0」,分別用高(或低)電平或低(或高)電平表示,人們把方 波固有的頻帶稱為基帶(由消息直接轉換成的未經調制變換的信號所佔的頻帶,理論上基帶信號的頻譜是從0到無窮大),方波電信號稱為基帶信號。
在數字信號頻譜中,把直流(零頻)開始到能量集中的一段頻率范圍稱為基本頻帶,簡稱為基帶。因此,數字信號被稱為數字基帶信號,在信道中直接傳輸這種基帶 信號就稱為基帶傳輸。在基帶傳輸中,整個信道只傳輸一種信號,通信信道利用率低。一般來說,要將信源的數據經過變換變為直接傳輸的數字基帶信號,這項工作 由編碼器完成。在發送端,由編碼器實現編碼;在接收端由解碼器進行解碼,恢復發送 端原發送的數據。基帶傳輸是一種最簡單最基本的傳輸方式。是典型的矩形電脈沖信號,其頻譜包括直流、低頻和高頻等多種成份。
由於在近距離范圍內,基帶信號的功率衰減不大,從而信道容量不會發生變化,因此,在區域網中通常使用基帶傳輸技術。
在基帶傳輸中,需要對數字信號進行編碼來表示數據。
頻帶傳輸
遠距離通信信道多為模擬信道,例如,傳統的電話(電話信道)只適用於傳輸音頻范圍(300-3400Hz)的模擬信號,不適用於直接傳輸頻帶很寬、但能量集中在低頻段的數字基帶信號。
頻帶傳輸就是先將基帶信號變換(調制)成便於在模擬信道中傳輸的、具有較高頻率范圍的模擬信號(稱為頻帶信號),再將這種頻帶信號在模擬信道中傳輸。
計算機網路的遠距離通信通常採用的是頻帶傳輸。
基帶信號與頻帶信號的轉換是由調制解調技術完成的。
寬頻傳輸
通過藉助頻帶傳輸,可以將鏈路容量分解成兩個或更多的信道,每個信道可以攜帶不同的信號,這就是寬頻傳輸。寬頻傳輸中的所有信道都可以同時發送信號。如CATV、ISDN等。
寬頻傳輸和基帶傳輸的特性
基帶傳輸:
由計算機或終端產生的數字信號,頻譜都是從零開始的,這種未經調制的信號所佔用的頻率范圍叫基本頻帶(這個頻帶從直流起可高到數百千赫,甚至若干 兆赫),簡稱基帶(base band)。這種數字信號就稱基帶信號。舉個簡單的例字拉:在有線信道中,直接用電傳打字機進行通信時傳輸的信號就是基帶信號。而傳送數據時,以原封不動 的形式,把基帶信號送入線路,稱為基帶傳輸。基帶傳輸不需要數據機,設備化費小,適合短距離的數據輸,比如一個企業、工廠,就可以採用這種方式將大量 終端連接到主計算機。另外就是傳輸介質,區域網中一般都採用基帶同軸電纜作傳輸介質,不過如果你打算用光纖,我也絕對沒有異議。
頻帶傳輸:
上面的傳輸方式適用於一個單位內部的區域網傳輸,但除了市內的線路之外,長途線路是無法傳送近似於0的分量的,也就是說,在計算機的遠程通信中, 是不能直接傳輸原始的電脈沖信號的(也就是基帶信號了)。因此就需要利用頻帶傳輸,就是用基帶脈沖對載波波形的某些參量進行控制,使這些參量隨基帶脈沖變 化,這就是調制。經過調制的信號稱為已調信號。已調信號通過線路傳輸到接收端,然後經過解調恢復為原始基帶脈沖。這種頻帶傳輸不僅克服了目前許多長途電話 線路不能直接傳輸基帶信號的缺點,而且能實現多路復用的目的,從而提高了通信線路的利用率。不過頻帶傳輸在發送端和接收端都要設置數據機。
但是,在基帶傳輸中我們常常會有一個深有體會的問題,就是等等等——在這種情況下,我們就非常羨慕並嚮往一種傳輸了,這種傳輸的名字就叫 ——寬頻傳輸。所謂寬頻,就是指比音頻(4KHZ)帶寬還要寬的頻帶,簡單一點就是包括了大部分電磁波頻譜的頻帶 拉。使用這種寬頻帶進行傳輸的系統就稱為寬頻傳輸系統,它簡直就可以容納所——有的廣播,並且還可以進行高速率的數據傳輸。對於區域網而言,寬頻這個術語 專門用於使用傳輸模擬信號的同軸電纜,可見寬頻傳輸系統是模擬信號傳輸系統,它允許在同一信道上進行數字信息和模擬信息服務。基帶和寬頻的區別還在於數據 傳輸速率不同。基帶數據傳輸速率為0~10 Mb/s,更典型的是1Mb/s~2.5Mb/s,通常用於傳輸數字信息。寬頻是傳輸模擬信號,數據傳輸速率范圍為0~400Mb/s,而通常使用的傳輸 速率是5Mb/s~10 Mb/s,而且一個寬頻信道可以被劃分為多個邏輯基帶信道。這樣就能把聲音、圖像和數據信息的傳輸綜合在一個物理信道中進行,以滿足你對網路非常過分的要 求。總之,寬頻傳輸一定是採用頻帶傳輸技術的, 但頻帶傳輸不一定就是寬頻傳輸。