導航:首頁 > 手機網路 > 移動網路知識圖譜自動化生成

移動網路知識圖譜自動化生成

發布時間:2022-04-17 00:04:47

『壹』 citespace怎麼根據檢索結果繪制知識圖譜

CiteSpace的核心功能是產生由多個文獻共被引網路組合而成的一種獨特的共被引網路,以及自動生成的一些相關分析結果。每個文獻共被引網路對應於一個歷時一年或幾年的時間段。最終顯示的網路不是各個網路之間的簡單疊加

『貳』 知識圖譜有什麼用處

知識圖譜 (Knowledge Graph) 是當前的研究熱點。自從2012年Google推出自己第一版知識圖譜以來,它在學術界和工業界掀起了一股熱潮。各大互聯網企業在之後的短短一年內紛紛推出了自己的知識圖譜產品以作為回應。比如在國內,互聯網巨頭網路和搜狗分別推出」知心「和」知立方」來改進其搜索質量。那麼與這些傳統的互聯網公司相比,對處於當今風口浪尖上的行業 - 互聯網金融, 知識圖譜可以有哪方面的應用呢?

目錄
1. 什麼是知識圖譜?
2. 知識圖譜的表示
3. 知識圖譜的存儲
4. 應用
5. 挑戰
6. 結語

1. 什麼是知識圖譜?

知識圖譜本質上是語義網路,是一種基於圖的數據結構,由節點(Point)和邊(Edge)組成。在知識圖譜里,每個節點表示現實世界中存在的「實體」,每條邊為實體與實體之間的「關系」。知識圖譜是關系的最有效的表示方式。通俗地講,知識圖譜就是把所有不同種類的信息(Heterogeneous Information)連接在一起而得到的一個關系網路。知識圖譜提供了從「關系」的角度去分析問題的能力。

知識推理

推理能力是人類智能的重要特徵,使得我們可以從已有的知識中發現隱含的知識, 一般的推理往往需要一些規則的支持【3】。例如「朋友」的「朋友」,可以推理出「朋友」關系,「父親」的「父親」可以推理出「祖父」的關系。再比如張三的朋友很多也是李四的朋友,那我們可以推測張三和李四也很有可能是朋友關系。當然,這里會涉及到概率的問題。當信息量特別多的時候,怎麼把這些信息(side information)有效地與推理演算法結合在一起才是最關鍵的。常用的推理演算法包括基於邏輯(Logic) 的推理和基於分布式表示方法(Distributed Representation)的推理。隨著深度學習在人工智慧領域的地位變得越來越重要,基於分布式表示方法的推理也成為目前研究的熱點。如果有興趣可以參考一下這方面目前的工作進展【4,5,6,7】。

大數據、小樣本、構建有效的生態閉環是關鍵

雖然現在能獲取的數據量非常龐大,我們仍然面臨著小樣本問題,也就是樣本數量少。假設我們需要搭建一個基於機器學習的反欺詐評分系統,我們首先需要一些欺詐樣本。但實際上,我們能拿到的欺詐樣本數量不多,即便有幾百萬個貸款申請,最後被我們標記為欺詐的樣本很可能也就幾萬個而已。這對機器學習的建模提出了更高的挑戰。每一個欺詐樣本我們都是以很高昂的「代價」得到的。隨著時間的推移,我們必然會收集到更多的樣本,但樣本的增長空間還是有局限的。這有區別於傳統的機器學習系統,比如圖像識別,不難拿到好幾十萬甚至幾百萬的樣本。

在這種小樣本條件下,構建有效的生態閉環尤其的重要。所謂的生態閉環,指的是構建有效的自反饋系統使其能夠實時地反饋給我們的模型,並使得模型不斷地自優化從而提升准確率。為了搭建這種自學習系統,我們不僅要完善已有的數據流系統,而且要深入到各個業務線,並對相應的流程進行優化。這也是整個反欺詐環節必要的過程,我們要知道整個過程都充滿著博弈。所以我們需要不斷地通過反饋信號來調整我們的策略。

6. 結語

知識圖譜在學術界和工業界受到越來越多的關注。除了本文中所提到的應用,知識圖譜還可以應用在許可權管理,人力資源管理等不同的領域。在後續的文章中會詳細地講到這方面的應用。

參考文獻

【1】De Abreu, D., Flores, A., Palma, G., Pestana, V., Pinero, J., Queipo, J., ... & Vidal, M. E. (2013). Choosing Between Graph Databases and RDF Engines for Consuming and Mining Linked Data. In COLD.

【2】User Behavior Tutorial

【3】劉知遠 知識圖譜——機器大腦中的知識庫 第二章 知識圖譜——機器大腦中的知識庫

【4】Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. A Review of Relational Machine Learning for Knowledge Graphs.

【5】Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. In Advances in Neural Information Processing Systems (pp. 926-934).

【6】Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems (pp. 2787-2795).

【7】Jenatton, R., Roux, N. L., Bordes, A., & Obozinski, G. R. (2012). A latent factor model for highly multi-relational data. In Advances in Neural Information Processing Systems(pp. 3167-3175).

『叄』 有沒有知識圖譜自動化的構建工具

知識圖譜構建工具_自動構建知識圖譜 由於谷歌提出了「知識圖譜」的概念,因此,很多人開始關注「知識圖譜」。但如何構建「知識圖譜」,尤其是如何自動構建知識圖譜,卻鮮有詳細介紹。

『肆』 什麼是知識圖譜

知識圖譜,是通過將應用數學、圖形學、信息可視化技術、信息科學等學科的理論與方法與計量學引文分析、共現分析等方法結合,並利用可視化的圖譜形象地展示學科的核心結構、發展歷史、前沿領域以及整體知識架構達到多學科融合目的的現代理論。

『伍』 為什麼有圖卷積神經網路

本質上說,世界上所有的數據都是拓撲結構,也就是網路結構,如果能夠把這些網路數據真正的收集、融合起來,這確實是實現了AI智能的第一步。所以,如何利用深度學習處理這些復雜的拓撲數據,如何開創新的處理圖數據以及知識圖譜的智能演算法是AI的一個重要方向。
深度學習在多個領域的成功主要歸功於計算資源的快速發展(如 GPU)、大量訓練數據的收集,還有深度學習從歐幾里得數據(如圖像、文本和視頻)中提取潛在表徵的有效性。但是,盡管深度學習已經在歐幾里得數據中取得了很大的成功,但從非歐幾里得域生成的數據已經取得更廣泛的應用,它們需要有效分析。如在電子商務領域,一個基於圖的學習系統能夠利用用戶和產品之間的交互以實現高度精準的推薦。在化學領域,分子被建模為圖,新葯研發需要測定其生物活性。在論文引用網路中,論文之間通過引用關系互相連接,需要將它們分成不同的類別。自2012年以來,深度學習在計算機視覺以及自然語言處理兩個領域取得了巨大的成功。假設有一張圖,要做分類,傳統方法需要手動提取一些特徵,比如紋理,顏色,或者一些更高級的特徵。然後再把這些特徵放到像隨機森林等分類器,給到一個輸出標簽,告訴它是哪個類別。而深度學習是輸入一張圖,經過神經網路,直接輸出一個標簽。特徵提取和分類一步到位,避免了手工提取特徵或者人工規則,從原始數據中自動化地去提取特徵,是一種端到端(end-to-end)的學習。相較於傳統的方法,深度學習能夠學習到更高效的特徵與模式。
圖數據的復雜性對現有機器學習演算法提出了重大挑戰,因為圖數據是不規則的。每張圖大小不同、節點無序,一張圖中的每個節點都有不同數目的鄰近節點,使得一些在圖像中容易計算的重要運算(如卷積)不能再直接應用於圖。此外,現有機器學習演算法的核心假設是實例彼此獨立。然而,圖數據中的每個實例都與周圍的其它實例相關,含有一些復雜的連接信息,用於捕獲數據之間的依賴關系,包括引用、朋友關系和相互作用。
最近,越來越多的研究開始將深度學習方法應用到圖數據領域。受到深度學習領域進展的驅動,研究人員在設計圖神經網路的架構時借鑒了卷積網路、循環網路和深度自編碼器的思想。為了應對圖數據的復雜性,重要運算的泛化和定義在過去幾年中迅速發展。

『陸』 如何構建知識圖譜

自己建嗎可以下載圖譜軟體構建
http://www.cnblogs.com/R0b1n/p/5224065.html可以參考一下這個

SPSS: 大型統計分析軟體,商用軟體。具有完整的數據輸入、編輯、統計分析、報表、圖形繪制等功能。常用於多元統計分析、數據挖掘和數據可視化。
Bibexcel: 瑞典科學計量學家Persoon開發的科學計量學軟體,用於科學研究免費軟體。具有文獻計量分析、引文分析、共引分析、耦合分析、聚類分析和數據可視化等功能。可用於分析ISI的SCI、SSCI和A&HCI文獻資料庫。
HistCite: Eugene Garfield等人於2001年開發的科學文獻引文鏈接分析和可視化系統,免費軟體。可對ISI的SCI、SSCI和SA&HCI等文獻資料庫的引文數據進行計量分析,生成文獻、作者和期刊的引文矩陣和實時動態引文編年圖。直觀的反映文獻之間的引用關系、主題的宗譜關系、作者歷史傳承關系、科學知識發展演進等。
CiteSpace: 陳超美博士開發的專門用於科學知識圖譜繪制的免費軟體。國內使用最多知識圖譜繪制軟體。可用於追蹤研究領域熱點和發展趨勢,了解研究領域的研究前沿及演進關鍵路徑,重要的文獻、作者及機構。可用於對ISI、CSSCI和CNKI等多種文獻資料庫進行分析。
TDA: Thomson Data Analyzer(TDA)是Thomson集團基於VantagePoint開發文獻分析工具。商用軟體。具有去重、分段等數據預處理功能;可形成共現矩陣、因子矩陣等多種分析矩陣;可使用Pearson、Cosine等多種演算法進行數據標准化;可進行知識圖譜可視化展示。
Sci2 Tools: 印第安納大學開發的用於研究科學結構的模塊化工具可從時間、空間、主題、網路分析和可視化等多角度,分析個體、局部和整體水平的知識單元。
ColPalRed: Gradnada大學開發的共詞單元文獻分析軟體。商用軟體。結構分析,在主題網路中展現知識(詞語及其關系);戰略分析,通過中心度和密度,在主題網路中為主題定位;動態分析,分析主題網路演變,鑒定主題路徑和分支。
Leydesdorff: 系類軟體。阿姆斯特丹大學Leydesdorff開發的這對文獻計量的小程序集合。處理共詞分析、耦合分析、共引分析等知識單元體系。使用「層疊圖」實現可視化知識的靜態布局和動態變化。
Word Smith: 詞頻分析軟體。可將文本中單詞出現頻率排序和找出單詞的搭配片語。
NWB Tools: 印第安納大學開發的對大規模知識網路進行建模、分析和可視化工具. 數據預處理;構建共引、共詞、耦合等多種網路;可用多種方法進行網路分析;可進行可視化展示.
Ucinet NetDraw: Ucinet是社會網路分析工具。包括網路可視化工具Net Draw。用於處理多種關系數據,可通過節點屬性對節點的顏色、形狀和大小等進行設置。用於社交網路分析和網路可視化。
Pajek: 來自斯洛維尼亞的分析大型網路的社會網路分析免費軟體。Pajek基於圖論、網路分析和可視化技術,主要用於大型網路分解,網路關系展示,科研作者合作網路圖譜的繪制。
VOSviewer: 荷蘭萊頓大學開發的文獻可視化分析工具。使用基於VOS聚類技術技術實現知識單元可視化工具。突出特點可視化能力強,適合於大規模樣本數據。四種視圖瀏覽:標簽視圖、密度視圖、聚類視圖和分散視圖。

[4]陳悅, 劉則淵, 陳勁等. 科學知識圖譜的發展歷程[J]. 科學學研究, 2008, (03): 449-460.

[5]Shiffrin, R.M., and Katy Börner. Mapping Knowledge Domains[C]. Proc. Proceedings of the National Academy of Sciences of the United States of America pp. 5183-5185.

[6]Börner, K., Chen, C.和Boyack, K.W. Visualizing knowledge domains[J]. Annual review of information science and technology, 2003, 37, (1): 179-255.

[7]CM, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57, (3): 359-377.

[8]陳悅和劉則淵. 悄然興起的科學知識圖譜[J]. 科學學研究, 2005, (02): 149-154.

[9]邱均平. 信息計量學[M]. (武漢大學出版社, 2007. 2007).

[10]沙勇忠和牛春華. 信息分析[M]. (科學出版社, 2009. 2009).

[11]塞沃爾, 建軍和煦. 鏈接分析: 信息科學的研究方法[M]. (東南大學出版社, 2009. 2009).

[12]Egghe, L.和Rousseau, R. Introction to informetrics: Quantitative methods in library, documentation and information science[J]. 1990

[13]韓家煒, 坎伯, 裴健等. 數據挖掘: 概念與技術[M]. (機械工業出版社, 2007. 2007).

[14]Wasserman, S. Social network analysis: Methods and applications[M]. (Cambridge university press, 1994. 1994).

[15]Persson, O., R. Danell, J. Wiborg Schneider. How to use Bibexcel for various types of bibliometric analysis[C]. Proc. International Society for Scientometrics and Informetrics., Leuven, Belgium2009 pp. 9–24.

[16]Yang, Y., Akers, L., Klose, T.等. Text mining and visualization tools–impressions of emerging capabilities[J]. World Patent Information, 2008, 30, (4): 280-293.

[17]Börner, K., Huang, W., Linnemeier, M.等. Rete-netzwerk-red: analyzing and visualizing scholarly networks using the Network Workbench Tool[J]. Scientometrics, 2010, 83, (3): 863-876.

[18]廖勝姣. 科學知識圖譜繪制工具:SPSS和TDA的比較研究[J]. 圖書館學研究, 2011, (05): 46-49.

[19]Scott, M. WordSmith tools[M]. (Oxford: Oxford University Press, 1996. 1996).

[20]Batagelj, V.和Mrvar, A. Pajek - Program for Large Network Analysis[M]. (1998. 1998).

[21]Borgatti, S.P., Everett, M.G.和Freeman, L.C. Ucinet for Windows: Software for social network analysis[J]. 2002

[22]Van Eck, N.J.和Waltman, L. VOSviewer: A computer program for bibliometric mapping[J]. 2009

『柒』 如何提高知識圖譜自動化構建的准確性

構建流程的自動化依賴於簡單的重復性任務。第一步是編寫構建腳本。構建腳本可以是任何形式:批處理文件/shell腳本、基於xml的任務集合、自己寫的可配置程序、或是他們中的任意組合。在.NET世界中,MSBuild是由微軟提供的命令行功能,它使用基於xml的項目文件構建Visual Studio解決方案。NAnt是另一個常見.NET構建腳本工具,類似於流行的Java工具Ant。其他的包含開源社區中常見的Make,Ruby中的Rake等。
無論你選擇如何編寫構建腳本,你應該尋找適合你的方法並堅持下去。例如,你一旦找到構建web程序項目的最佳方式,為新的web應用程序創建構建腳本應該就很簡單了,只要從其他項目中拷貝腳本、修改部分名稱和路徑即可。

『捌』 知識圖譜是如何實現自動化構建

通過自然語言處理,從專業領域的自然語言數據和結構化數據中抽取出實體和關系,構建三層知識圖譜。

『玖』 知識圖譜,供應鏈知識庫,知識自動化是什麼

在知識表示和推理中,知識圖譜是使用圖結構的數據模型或拓撲來整合數據的知識庫。 知識圖通常用於存儲具有自由形式語義的實體(對象、事件、情況或抽象概念)的相互關聯描述。

閱讀全文

與移動網路知識圖譜自動化生成相關的資料

熱點內容
無線網路技術導論 瀏覽:180
蘋果手機如何打開股票網路 瀏覽:572
基礎自學計算機網路 瀏覽:196
網路撥號到路由器 瀏覽:783
榮耀手機網路連通性異常怎麼解決 瀏覽:5
路由器不轉發指向網路的廣播 瀏覽:916
無線網路怎麼找密碼 瀏覽:826
路由器按了reset網路沒了 瀏覽:493
wifi網路微信收不到語音呼叫 瀏覽:95
網路暴力作品有哪些 瀏覽:856
網路連接已開啟為什麼還是顯示x 瀏覽:233
如何避免網路交友詐騙 瀏覽:573
電信網路費怎麼取消 瀏覽:844
oppo手機沒移動網路怎麼辦 瀏覽:117
路由器已連接就是無法訪問網路 瀏覽:409
網路訪問在哪裡看 瀏覽:36
提示無法加入無線網路 瀏覽:179
小米3盒子增強版無線網路 瀏覽:133
台式電腦用網線好還是無線網路好 瀏覽:126
網路大屏哪個好 瀏覽:799

友情鏈接